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Abstract ; Sparse coding (SC) based visual tracking (1,-tracker) is gaining increasing attention, and many related
algorithms are developed. In these algorithms, each candidate region is sparsely represented as a set of target tem-
plates. However, the structure connecting these candidate regions is usually ignored. Lu proposed an NLSSC-tracker
with non-local self-similarity sparse coding to address this issue, which has a high computational cost. In this study,
we propose an Kuclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local
structure. With this tracker, the optimization procedure is transformed to a small-scale 1,-optimization problem, sig-

nificantly reducing the computational cost. Extensive experimental results on visual tracking demonstrate the

effectiveness and efficiency of the proposed algorithm.
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Recently, visual target tracking was widely used
in security surveillance, navigation, human-computer

120 n a video se-

interaction, and other applications
quence, targets for tracking often change dynamically
and uncertainly because of disturbance phenomena
such as occlusion, noisy and varying illumination, and
object appearance. Many tracking algorithms were pro-
posed in the last twenty years that can be divided into
two categories; generative tracking and discriminant
tracking algorithms''?'. Generative algorithms (e. g.,
eigen tracker, mean-shift tracker, incremental tracker,
covariance tracker > ) adopt appearance models to ex-
press the target observations, whereas discriminant al-
gorithms (e. g., TLD" , ensemble trackingm , and
MILTrack'*") view tracking as a classification prob-
lem, thus attempting to distinguish the target from the
backgrounds. Here, we present a new generative algo-

rithm.
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Based on sparse coding (SC; also referred to as
sparse sensing or compressive sensing) *’' | Mei pro-
posed an 1 -tracker for generative tracking®® ad-
dressing occlusion, corruption, and some other chal-
lenging issues. However, this tracker incurs a very
high computational cost to achieve efficient tracking
(see section 2.1 and Fig.1 for details) , and the local
structures of similar regions are ignored, which may
cause the instability and even failure of the 1, -tracker.
Indeed, the sparse coefficients, for representing six
similar regions ( CR,—CR;) under ten template regions
(T,-T,,) with original 1,-tracker, are diversified (Fig.
3). Considering CR, and CR,, for example, we can
see that although the latter is almost the partial occlu-
sion version of the former, their sparse representations
are very different. Tracking CR, (the woman’s face)
may fail, because the tracker is likely to incorrectly
consider the region Ty(the book) as its target.

Contrary to expectations, Xu proved that a sparse
algorithm cannot be stable and that similar signals may

not exhibit similar sparse coefficients''” . Thus, a
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trade-off occurs between sparsity and stability when de-
signing a learning algorithm. In addition, instability in
the 1,-optimization problem affects the performance of
the 1,-tracker.

Lu developed a NLSSS-tracker ( NLSSST) based
on SC applying a non-local self-similarity constraint by
introducing the geometrical information of the set of
candidates as a smoothing term to alleviate the instabil-

"I However, its low efficiency (e-

ity of the 1,-tracker!
ven slower than the original 1 -tracker, Table 4) re-
stricts its applicability in real-time tracking. In this
study, motivated by the robustness of the I,-tracker and
stability of NLSSST, we propose a novel tracker,
called ELSS-tracker ( ELSST) , that is both robust and
efficient. The main contributions of this study are as
follows ;

1) An efficient tracker, i.e., ELSST, is developed
by considering the local structure of the set of target
candidates. In contrast to the Lu5s'"" and Mei5s-track-
er'™ | our tracker is more stable and sparse.

2) The proposed tracker shows excellent perform-
ance in tracking different video sequences with regard
to scale, occlusion, pose variations, background clut-
ter, and illumination changes.

The rest of this study is organized as follows: 1,-
and NLSSS-tracker are introduced in section 2; in sec-
tion 3, we analyze the disadvantages of these two track-
ers and propose our tracker; experimental results with
our tracker and four comparison algorithms are reported

in section 4; the conclusion and future work are sum-

marized in section 5.

1 Related works

1.1 Sparse coding and the 1,-tracker

Sparse coding is an attractive signal reconstruction
method proposed by Candes'®” that reconstructs a sig-
nal y € R™' with an over-complete dictionary D e
R™"*2™ with a sparse coefficient vectorc € R™' . The
SC formulation can be written as the 1 -norm-constrain-
ed optimization problem as follows

min, |y -De |2 +alell, (1
which is NP-hard, where || - || .denotes the vector’s
Frobenius norm (i.e., l,-norm), and | - || ,counts
the number of non-zero elements of the vector. Candes
proved that the 1,-norm || - |, is the tightest upper
bound of the I;-norm || - || ,, and thus, Eq.(1) can
be rewritten as the following 1,-optimization prob-
lem'*7” .
min, |y -Deli+alel, (2

Based on SC, Mei presented a nice 1,-tracker for
robust tracking'**' (Fig. 1). Considering that the target
is located in the latest frame, the I,-tracker is initial-
ized in the new arrival frame and N candidate regions
are generated with Bayesian inference (Fig. la, b).
With n templates learned from previous tracking and
2m trivial templates (m positive ones and m negative
ones, where m is the dimension of 1D stretched image,
Fig. 1c), Eq.(2) can be solved (Fig. 1d,e,f). With
positive and negative trivial templates, Mei added a
non-negative constraint ¢ =0 in Eq.(2), with which
the reconstruction errors of all candidate regions with
SC coefficients can be used to determine the weights for
each candidate, and the object in the new arrival frame
can be located with the sum of the weighted candidates.

The dictionaries updating strategies can be seen in'**’.

target template 7'

I, Trival Template /

(b) N candidate
regions

(c)Over-complete
dictionary

a [E .
D n m

nxN
¢, €R

mxN
c,eR

c € Rme

cwith sparity
constraint minlicl|

(e) Dictionaries

(f) Coefficient of
represention

Fig.1 Original 1,-tracker algorithm
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1.2 Non-local self-similarity based sparse coding
for tracking ( NLSSST)
Recently, Xu indicated the trade-off between
sparsity and stability in sparse regularized algo-

10]

rithms'"®’. Moreover, Yang pointed out the same A-op-

121 Based on

timization issue in pattern classification
the fact that lots of similar regions exist in all N candi-
dates generated by Bayesian inference, Lu proposed
his tracker with the non-local self-similarity constraint

as

2
=JCc-cwl; (3)

n K
Z ‘Ci - ijicj
i=1 j=1

where ¢; and ¢; are the sparse coefficients corresponding
to the candidate regions y, and y;, respectively, and w;,
is the weight assigned to ¢;. Given N m-dimensional
candidates Y = [y, --- y,] € R™" | the first K-closest
candidate point aroundy; is denoted by N (y;), and

1 IO -NgOop 112

the weight w; = —e h , where h is a pa-

rameter enforcing similarity, and s; is the normalization

factor. The weight w; measures the similarity between
. , .

the K-neighborhood of y; and y,. Lu’ s algorithm actual-

ly attempts to solve the following:

ming | Y =DC |} +a |C|, +B[C-CW],

(4)

Taking the solution of the 1,-tracker from Eq.(2)

as the initial coefficients ¢,, Eq.(4) can be solved
through iterative computations'''’. However, the high
computational cost of the original 1,-tracker and itera-
tive procedure for maintaining the neighborhood con-
straints of sparse coefficients make NLSSST inefficient
in achieving real-timing tracking. In contrast to Fig. 1,
the schematic diagram of NLSSST presented in Fig. 2,
includes an additional neighborhood constraint between

y; and Ne(y,).

target template 7

. trival template L

...... 'id
(a) N Candidate regions
T .
y nxN
I ¢, ER
mxN
i c,eR
N
| - c_e R™
1 ‘ m ¢ with sparity
Y Vi Ne(n) "\{3.Ne(n)) constraint min ¢ |

(c) Sample

(d) Dictionaries

(e) Coefficient of representation

Fig. 2 Lu’s NLSSST Algorithm

2 Fuclidean local structure-based sparse

coding for tracking ( ELSST)

To circumvent the heavy computation burden of
the 1,-tracker and NLSSST (Table 4), we propose an
efficient tracker, called ELSST, that considers the lo-
cal FEuclidean structures of the candidates.

2.1 Original euclidean local structure constraint
sparse coding ( Original ELSSC)

It is evident from Eq. (4) that NLSSST attempts

to solve a double I,-norm problem. However, it is well

known that the 1,-norm is much more commonly used
for measuring the distance between two vectors and is
much easier to optimize than the 1,-norm. Thus, we
take the former to measure the relationships between
the sparse coefficient vectors, which are close to each
other, i.e., the Euclidean local-structure constraint,
and the latter 1,-norm of C to maintain the sparsity of

the optimization as follows;

ming [| ¥ =DC [z +a [[C|, +B [ C-CW];
(5)
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Table 1 Optimization for ELS constraint based SC( ELSSC)

Input; Given N data points Y=[ y,+-- v, ] € R™"  over-complete dictionary D €

Output ; Sparse matrix C=[ ¢, ¢, ] € RN

Rmx(n+2m)

Parameters: Maxiumn iteration number J= 10, neighborhood size K=5,all-zero vector ¢,,a=0.01,8=0.5,y=0.001

1:For each point y,,compute the nearest K neighborhoods N (y,;) and weights w,

:Compute the SVD-decomposition of D = UXV" ,where V e R x(2m

2

3:compute || D'D | , and set | D"D || +28 randomly
4.Fori=1:N

5: Fort=1.J

6

SO | ¢ = ¢V ||, < 7, break inner iteration

-

i

X ) — 2 L(1=1)
: Compute 6, i

1
(1) _ 7[DT}Q + zﬁei(kl) + (')’ _ 23)01‘[71 _DTDL(;H] ,and xi(/,) ZVWEI) ER(m-zm)xl
Y

i

8: Represent x'” with sparse coefficient vector ¢! ,i.e.,optimize —— || x{” =Ve'” | 3+a || ¢! ||
i [ ’ 2 i 2 i 1

9. End
10 H End

Equation (5) is the objective function of our Eu-
clidean local structure constraint-based SC and can be
solved through iterative computation. In particular, at
the ¢-th iteration, for a single candidate y, in Y, Eq.
(5) can be written as follows:

minci([)f( Cim) = min, () Iy - Dcim [ g +

alle” I +B e =677 13 (6)
where 6" = Z jwﬁc;t_l) . At the ¢-th iteration for the
optimization of ¢, ,c;,i 7 jis fixed. Therefore, we can
regard 0''"" as a constant. To solve Eq. (6) , we intro-

duce the following surrogate function as presented in

[11]:
A t 1 t
'»b(ci,co): ? ||ci(') ) ”; _? ||DC§) = Dc, ”;

(7
where A is convex. According to Daubechies'™ | when
A = D'Dis a strictly positive definite matrix, (¢, ,c,)
is strictly convex for any ¢, with respect to ¢;. Hence, in
our experiments, the constant A is set accordingly ( A =
vy = 2B; Table 1). Once the over-complete dictionary D is
fixed, we can derive the following convex objective func-

tion from Eq. (7):

1
)= P =D’ |y +a g +B e -

i

_ v -2 1 ,
67" |15 A e =l Y | D’ =D, |5 =

1 ) t o
o I3 = oDl w1 1 =Bl 87 +
1= 0 =B ) + S i

t ! .
(Del” \Deg) = I1Dey I3+ 160" |3 =

TG = (el = 2Bl 67 -
(v =B){el" o) +(De” D) +a [ |, +
SR = PV AV HE
L R FET N EL PR

(8)
where
0= DYy #2800 (y <20 DD
and

Yy - 28

1
5 el == 11Dey I3+

1
R= Il

- Y
B lle; " I3 -= o 115

are fixed at the ¢-th iteration. Thus, we can simplify
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Eq. (8) as follows:
t y t 12 t
fCe™) = Fei” =o 15+ lle” I (9)

To solve Eq. (9) using SVD, we decompose the over-
complete dictionary D € R™"**" as D =UXV" ,where
Ue R™.5 e R™U™ and V e RO xnam
Since V is an orthogonal matrix, Eq. (9) can be re-

written as
Y
Ay =2 = Vel G el

(10)
where x” = Vo . Consequently, we can transform the
optimization problem with the Euclidean local structure
constraint in Eq. (6) to a pure 1,-optimization problem
in Eq. (10), i.e., to represent the given signalx'" with
sparse coefficientsc!” under the new dictionary V e
Rz *n2m) - The procedure of Euclidean local-struc-
ture constraint based sparse coding ( ELSSC) is sum-
marized in Table 1 and is very diff erent from the opti-
mization procedure followed for NLSSSC'', even
though the difference between their objective functions
seems very small (Eqs. (4) and (5), respectively).
2.2 Improved euclidean local structure constraint

sparse coding ( Improved ELSSC)

If m in Eq. (10) is large, it is time-consuming to
obtain the optimization result ¢;, as that in 1,-optimiza-
tion and NLSSSC. Fortunately, in terms of SVD and
the structure of D (Figs. 1 and 2), we have

D=U3V'=[UV'",I, -1I]=[T,I, -1]

(11)
where I denotes the m-ordered identity matrix. 3" is the
first n rows of ', V' consists of the first n rows and the
first n columns of V, and m>n. As a result, when
constructing the dictionary V in Eq. (10), only the
first n rows and first n columns of V must be prepared,
whereas the remaining parts of V are not considered to
make any contribution to the target templates T. Thus,

the large scale optimization in Eq. (10) can be re-

duced to a much smaller one as follows:

i

Ay =2 = Ve e e

(12)
where V' = [V' I' = I"] € R”",I' denotes the n-or-
dered identity matrix, and x," is the first n rows of x, in

Eq.(10).
2.3 Original and improved ELSSC-tracker

Based on the above algorithm, our tracker can be
obtained with the framework of the original 1, -track-
er'™' (Table 2). We need to iteratively solve the large-
scale |,-optimization problem in Eq. (10) twice, up to
three times for each candidate in the algorithm, and
more than five times in NLSSST. The initial sparse
coeflicients ¢, are considered as all-zero vectors and it-
eratively solve the problem without any 1,-optimization
issues, as in Table 1 in [ 11]. Nevertheless, we find
that, in NLSSST, it is more eff ective and accurate to
initialize ¢, as the solution of the 1,-optimization prob-
lem. Therefore, the computation complexity of our
tracker is of the same order of magnitude as that of the
l,-tracker and NLSSST. When we resize all n = 10 tar-
gets and N = 200 candidate regions to 40 x 40, i.e.,
m = 1600 (Figs. 1 and 2), then the over-complete
dictionary D is 1 600 x 3 210 and the orthogonal ma-
trix Vis 3210 x 3210 in Eq. (10). It is very difficult
to solve the corresponding |, -optimization problem with
such a D (in |,-tracker and NLSSST) or V (in our
ELSST).

With the improved ELSSC, 3" is the first ten rows
of 3, and V’ consists of the first ten rows and first ten
columns of V. Thus, each iteration of each candidate
region in ELSST can be reduced from the large-scale
1, -optimization problem to a much smaller one because
of the much smaller scale V' € R . To overcome
the problem of occlusions in tracking, the analogous
trivial templates are used to construct the new dictiona-
ryV" € R'” | i.e., a ten-ordered identity matrix and

ten-ordered negative identity matrix.
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Table 2 Euclidean Local Structure based Tracking ( ELSS-tracker)

Input: Given a video stream for tracking,location of the target /, in frame #1

Output ; Tracking results of each frame

1:Set s=1,select 10 template regions extremely near the target in #1 then resize and stretch them to be T €

: While not reach the end of the video sequence,s<—s+1

O B " \S]

6 : Compute the reconstruct errors el” = | x”

i

:Solve ELSSC-optimization with ¥ and D in Tab.1,and denote the optimization result as ¢®

— Vel || 2and the normalized weight w!” = w”/ Z w™, where w
;

Rl 600x 10

:Pick N=200 candidate regions around the latest target location _, in frame #s,and stretch to be ¥ e R'%**®

: Construct D with T, positive and negative identity matries,likewise in Fig.1 and Fig2

)

» =

i

exp( — e /)

7 :Locate the object for tracking with the weighted sum of all 200 candidate regions and w'” in frame #s

8:Select 10 regions that extremely nearby the object as the new target templates T

9.End

3 Experiments

3.1 Experimental setting

In order to evaluate the proposed tracker, experi-
ments on 12 video sequences were conducted, inclu-
ding Surfer, Dudek, Faceocc2, Animal, Girl, Stone,
Car, Cup, Face, Juice, Singer, Sunshade, Bike, Car

17-19
17190 These sequences covered al-

Dark, and Jumping
most all challenges in tracking, including occlusion
(even heavy occlusion) , motion blur, rotation, scale
variation, illumination variation, and complex back-
ground. For comparison, we used four state-of-the-art
algorithms with the same initial positions and the same
representations of the targets. They were the incremen-
tal learning-based tracker (IVT, a common discrimi-
nant tracker) ' | the covariance-based tracker ( Cov-
Track, a generative tracker on Lie-group)'"’ | the I,-
tracker (‘a generative tracking method ) 1891 and the
NLSSST'""" All the experiments were run on a compui-
er with a 2.67 GHz CPU and a 2 GB memory.

The main parameters used in our experiments
are set as follows: the number of candidate regions
N =200, the number of template regions is n =
10, and the candidates and targets are resized to
40x40.

3.2 Experimental results for sparsity and stability

The stability and sparsity of the original sparse
coding, the NLSSSC, and the original and improved

ELSSC were verified. The experiments were designed
with the Face sequence in the VOT 2013 benchmark
dataset' '™ as follows: six similar regions were repre-
sented (CR,,---,CR;, their means and standard deri-
vations illustrate the similarity) sparsely with template
T=I[T,,

from each other (the red region and the green one).

1 600x10 .
,To] € R from two regions apart

Evidently, T is over-completed, and the entire diction-

16003210 U
R ™ is constructed likewise in Figs. 1

ary D e
and 2.
The sparse coeflicients of CR, -+, CR, generated
with the 1,-, the NLSSSC-, the original ELSSC-, and
the improved ELSSC-optimization are plotted in Fig. 3.
In particular, six similar regions have very diff erent
representation coefficients, when using the original 1,-
optimization problem, which ignores the structure in-
formation between regions. The results of the other
three algorithms are much more stable, because of
preservation of the structural information. If two regions
are similar to each other, they also have similar sparse
coefficients. This improves the robustness of tracking;
otherwise, the tracker may degenerate or even fail to
track. CR, for example, with 1,-optimization, can be
represented by T,, Ty, T, T,, and T, and the track-
er may fail to track the top of the book. Meanwhile, ex-
perimental results show that, NLSSSC and our two

ELSSC are sparser than the original 1,-optimization

problem.
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[ .SSSC-tracker

Fig. 3 Comparisions of sparsity and stability with the original 1,-, NLSSSC-, and our ELSSC-optimization. The

sparse coefficients only are accurated to the second decimal place.

3.3 Experimental results for visual target tracking

We evaluate the investigated algorithms compara-
tively, using the center location errors, the average
success rates, and the average frames per second. The
results are shown in Figs. 4&5 and in Tables 3&4. The
templates of NLSSST, the original ELSST, and the im-
proved ELSST are shown in Fig. 4(g-0). Overall, our
original and improved trackers outperform the other
state-of-the-art algorithms.

For occlusion, five algorithms, except IVT, func-
tion satisfactorily, especially at #206, #366 of the
Dudek sequence in Fig. 4 (b) (the head in tracking is
covered by the hand and glasses) , #143, #265, #496
of the Faceocc2 sequence in Fig. 4 (c¢) (the head in
tracking is covered by the book) , #85, #108, #433 of
the Girl sequence in Fig .4 (e) (the head in tracking
turns right, turns back, and blocks someone else) ,
and #56, #104, #301 of the Face sequence in Fig. 4
(1) (the head in tracking is also covered by the
book ). After the target recovers from occlusion, these
five trackers can seek it quickly. IVT works poorly, e-
ven loses the target in #10 of the Girl sequence ( Fig. 5
(e)), because the number of positive and negative
samples is limited ( considering the learning
efficiency ), and the incremental updating of the

classifier in IVT is less effective. CovIracking has a

large size of candidates ( based on the definition of in-
tegral image, the feature extraction of these candidates
is so fast, that its cost can be ignored) , which makes
it robust for occlusion, scale variation, and blur.
NLSSST and our original and improved trackers all
work well, when the targets are occluded; our two
trackers work even better.

For motion blur, our two trackers work better than
IVT and the original 1,-tracker. Moreover, CovTracking
also reveals its ability to handle blur (e.g., #4, #9,
and #38 in Fig. 4(d,o0). In the former sequence, the
animal runs and jumps fast (motion blur) with a lot of
water splashing (occlusion ), while in the latter, the
man ropes skipping and the camera cannot take the
clear face of the man. IVT and 1,-tracker fail both from
#4 in Fig. 4(d), and never recover after that. Our o-
riginal and improved ELSS lost the target in #31 and
#41, then recovered in #33 and #44 (Fig. 4(d)). In
#12 to #21 and #44 to #71, the improved ELSST works
better than original ELSST, CovTracking, 1, -tracker,
and NLSSST.

For rotation and scale variation, our trackers also
perform robustly (Figs. 4(a,c,e,g,j) and 5(a,c,e,
g,]). When the surfer falls forward and backward, the
girl turns left and right, moves towards and away from

the camera, the man turns left and right, the car turns
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over, and the juice bottle becomes bigger and smaller
in Surfer, Girl, Faceocc2, Car, and Juice sequence,
respectively, five trackers except IVT perform well, es-
pecially the NLSSS-tracker and our two ELSSC-trackers.

In a complex background and with high illumina-
tion variance ( Fig. 4 () ), there are many similar
stones to track. The 1 -tracker and our two trackers
work better than other three trackers. Cov-tracker fails,
because it extracts edge information of targets as one
dimension of features, and in this sequences, edge of
targets are ambiguous and hard to be distinct. Similar
results are obtained from Fig. 4(h,l,m).

Table 3 summarizes the average success rates.
Given the tracking results R, and the ground-truth R,
we use the detection criterion in the PASCAL VOC

16 .
6 e,

challenge
area(R, N R;)

area(R, U R,)

score =

to evaluate the success rate. In general, from the above
analysis, we find that our original and improved
ELSSC-trackers perform almost the same, and the for-
mer is slightly better, especially in the Dudek,
Faceocc2, Surfer, Stone, CarDark, and Jumping se-
quences (Fig. 5(a,b,c,f,n,o0). However, we also
find from Table 4, which summarizes the average
frames per second, that the improved ELSST works
much faster than the original ELSST and almost all the
other trackers; IVT is faster than the improved ELSST
when dealing with Surfer and Dudek sequences, but its
success rate is much worse than that of the improved
ELSST. It is sensitive under the phenomena of occlu-
sion, rotation, and target motion blur. The original 1,-
tracker performs well in most frames, but it is also
time-consuming and fails to track sometimes; Cov-
Tracking is suitable for occlusion and rotation, but fails

when facing a complex background.

FLSSSC-tracker?
Il-tracker

IvT
CovTracing

(j) Sequence juice (404 frames)

(k) Sequence singer (351 frames)

(c) Sequence faceocc2 (819 frames)

NISSSC-tracker
cher

frames)

LS r S

face (415 frames)

#64

(1) Sequence sunshade (172 frames)



(m) Sequence bike (228 frames)

(n) Sequence cardark (393 frames)

Fig. 4 Some tracking results
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Table 3 Average Success Rates

Video IVT CovTrack 1, -tracker NLSSST ELSST1 ELSST2
Sufer 0.0515 0477 0 0.038 8 0.464 6 0.466 7 0.405 2
Dudek 0.201 1 0.421 6 0.621 5 0.652 8 0.672 6 0.660 4
Faceocc2 0.4553 0.391 8 0.608 4 0.457 9 0.574 7 0.464 1
Animal 0.021 8 0.270 1 0.033 6 0.369 2 0.407 8 04117
Girl 0.022 8 0.217 1 0.486 9 04853 0.400 6 0.469 3
Stone 0.097 4 0.111 4 0.583 4 0.410 9 0.661 1 0.657 2
Car 0.060 7 0.185 8 0.095 6 0.341 8 0.327 8 0.382 5
Cup 0.630 0 0.376 9 0.559 8 0.573 8 0.523 8 0.563 7
Face 0.334 1 0.280 6 0.047 9 0.524 8 0.549 6 0.582 7
Juice 0.074 3 0.421 8 0.5111 0.5299 0.518 6 0.583 5
Singer 0.332 6 0.136 1 0.118 4 0.579 0 0.478 1 0.565 1
Sunshade 0.048 1 0.180 3 0.525 7 0.534 8 0.474 3 0.494 8
Bike 0.057 6 0.372 1 0.045 1 0.443 8 0.360 8 0.391 7
CarDark 0.083 1 0.308 7 0.079 0 0.011 0 0.420 8 03737
Jumping 0.057 7 0.275 5 0.071 1 0.084 7 0.453 0 0.450 5

The best two results are shown in bold. Our original and improved algorithms are shown in the last two columns, respectively.

Table 4 Average Frames per Second

Video IVT CovTrack 1, -tracker NLSSST ELSST1 ELSST2
Sufer 2.864 9 1.570 7 0.035 8 0.014 1 0.015 6 2.346 9
Dudek 33211 1.245 4 0.038 8 0.017 1 0.017 9 3.2454
Faceocc2 2.788 6 1.127 8 0.018 0 0.010 7 0.014 2 3127 8
Animal 1.897 9 1.253 4 0.031 2 0.0150 0.007 1 3.253 4
Girl 1.654 8 1.220 9 0.037 6 0.016 7 0.009 8 32209
Stone 1.290 3 1.889 0 0.027 1 0.014 4 0.014 6 4113 8
Car 3.684 1 2.850 2 0.062 1 0.052 5 0.036 5 6.225 3
Cup 7.817 5 3.5479 0.079 8 0.067 7 0.053 8 6.394 9
Face 6.742 2 2.896 1 0.054 3 0.041 7 0.054 6 6.168 1
Juice 7.048 9 3.929 7 0.063 5 0.066 5 0.058 6 5473 8
Singer 6.095 9 2.802 6 0.019 5 0.068 3 0.048 1 6.189 1
Sunshade 7.302 7 2.790 5 0.071 3 0.058 7 0.078 1 6.060 1
Bike 6.974 7 2.719 2 0.016 3 0.032 0 0.021 0 5.840 0
CarDark 3.704 1 1.395 1 0.022 6 0.055 2 0.029 5 24221
Jumping 7.329 6 2.608 0 0.052 0 0.047 6 0.057 9 35519

The best two results are shown in bold. Our original and improved algorithms are shown in the last two columns, respectively.
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4 Conclusions

In this study, to deal with sparsity and instability

in the 1,-optimization problem''*"’

and the high time
complexity of the NLSSSC-tracker [ 11], we propose a
novel efficient tracker, i.e., the Euclidean local-struc-
ture constraint based sparse coding ( ELSSC). Our new
algorithm is a 1,-tracker with a reconstructed over-com-
plete dictionary, which is diff'erent from that in the o-
riginal 1,-tracker and NLSSSC-tracker. Moreover, we
simplify the large-scale 1,-optimization problem in our
tracker to a much smaller one in our improved ELSSC-
tracker.

Compared with the original [, -tracker, our
ELSSC-tracker introduces the structure information a-
mong the candidate regions generated by the Bayesian
inference to the 1,-tracker, similar to that in the
NLSSSC-tracker. With our derivation, the optimization
procedure of our tracker (Eq.(10)) can be solved as
that in the 1, -optimization but very diff' erently from that
in the NLSSSC. Furthermore, our improved tracker is
much more efficient than the 1, -tracker and NLSSSC-

tracker. Our experiments demonstrate the sparsity, sta-

bility, and efficiency of our tracker.
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