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Abstract :In pattern classification and recognition oriented to massively complex data most classifiers suffer from the curse of

dimensionality. Manifold learning based nonlinear dimensionality reduction (NLDR) methods provide a good preprocessing to

reduce dimensionality before applying any classification method on high dimensional data. Multinomial logistic regression

(MLR) can be used to predict the class membership of feature data. In this study several unsupervised NLDR methods are

employed to reduce dimensions of the data and the MLR is used for class prediction of image/non-image data so that a new

method of classification and recognition oriented to massively complex image/non-image data is proposed based on multinomi-

al Logistic regression with nonlinear dimensionality reduction. Through a series of experiments and comparative analysis with

supervised NLDR methods for a lot of typical test data the new proposed method is validated to outperform other supervised

NLDR ones.
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Many decision-making problems can be catego-

rized as classification problems''’.

In a number of
practical applications, digital images have been used to
classifing objects; most examples have dealt with the
classification of handwritten numbers, motor vehicle li-
cence plates, images of human faces and so on. These
images contain high dimensional data and require di-
mensionality reduction before they can be used for clas-
gification. Recently, a class of nonlinear dimensionali-
ty reduction methods, based on the concept of manifold
learning, attracted researchers studying dimensionality
reduction for nonlinear images and non-image data.
Some conventional manifold based learning methods
may be listed as locally linear embedding ( LLE) (21
Isomap"’ , Laplacian eigenmaps ( LE)™ | diffusion
maps'>’ | locally

(HLLE) ™| and local tangent space alignment ( LT-

Hessian linear  embedding
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SA) ). These methods fall in the category of unsuper-
vised learning and could not be directly used for the
purpose of supervised learning of classification. For
classification, supervised versions of most of the algo-
rithms such as PCA-LLE and modified supervised LLE
(MSLLE) ™ | supervised LLE (SLLE) "' Weighte-

2] and supervised LT-

dlso'"’ | supervised Isomap
SA"™) were introduced from time to time.

For this paper, the idea of using unsupervised
NLDR methods with MLR ( U-NLDR + MLR) for im-
age data classification was introduced and correspond-
ing comparative analysis of their performance with some
well known supervised versions of NLDR algorithms
was carried out. For experimental and test purposes,
some well known grey scale images of handwritten dig-
its and human faces were used. The performance of va-

rious algorithms was evaluated by classification error

rate (ER) for out-of-sample data points.

1 Classification

One problem in classification or supervised learn-

ing involves guessing or predicting unknown classes
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based on observation. Typically speaking, a set of pat-
terns of features along with a correct classification,
known as training data, is available. Afiter training,
the task is to classify a new set of patterns, known as
test data. The training data set is assumed to be a ran-
dom sample from some large population.

When the dimensionality of input data is relatively
high, most classification methods, such as K-nearest
neighbor ( K-NN) classifier' , will suffer from the
curse of dimensionality and produce highly biased esti-
mates. Most of the high dimensional data is intrinsical-
ly low dimensional. Thus, the problem of classification
can be solved by firstly mapping the high dimensional
data into low dimensional subspace by using a suitable
NLDR method and then applying some classification
method”®’. The above mentioned U-NLDR methods are
not suitable for classification purpose. Some supervised
versions of these algorithms were developed. In our
study, we use four supervised NLDR methods—
WeightedIso, supervised Isomap ( S-Isomap), SLLE
and SLTSA.

Weightedlso changed the first step of Isomap. It
proceeded by first computing the K nearest neighbors of

each data point x and denoted K, as the set of nearest

same

neighbors having the same class label as x. Then it

“moved” each nearest neighbor in K, closer to x by

rescaling their Euclidean distance by a constant factor
1/A(A > 1) . Remaining steps of the algorithm re-
main the same as of the unsupervised Isomap.

In S-Isomap Euclidean distance d(x;,x;) is re-

placed by D(x;,x;) , where

4% (x1,7)
1 —-e B y = y.-
_ b 1 FRd
D(xiaxj) =
)
e F —a, ¥ FY;

The parameter B is used to prevent D(x;,%;) increasing

too fast when d(x;,x;) is relatively large. Usually, it is

set to be the average Euclidean distance between all
pairs of data points. The parameter « gives some oppor-

tunity to points in different classes to be “more simi-

”

lar”.

Among different versions of SLLE, we choose one

[10]

given in the reference’  , which used the idea of

adding distance between samples in different classes as

D = D + amax(D)A.

Where D is the pairwise distance matrix for combine
data set, and A; equals to 1 if data points are from dif-
ferent classes, and 0 otherwise. Here o e (0,1) con-
trols the amount to which class information should be
incorporated. This supervised version of LLE behaves
as a nonlinear Fisher mapping which controls nonlin-
earity.

Supervised LTSA also used the idea of artificially
increased shift distances between points belonging to
different classes, but left them unchanged if samples
were from the same class. The new pairwise distance
mairix was given as D' =D +pA, where the shift dis-
tance p is assigned a relatively large value in compari-
son with the distance between any pairs of points. A; e-
quals to 1 if data points are from different classes, and
0 otherwise.

We chose the above mentioned S-NLDR methods
due to their similar approachs of using class informa-
tion ; they increased the distance between data points of
different classes.

The S-NLDR methods do not explicitly provide
any mapping function for out-of-sample data points,
and it can be learnt by the estimation method'™*’ or by
some nonlinear interpolation techniques, such as gen-

) "7 To summa-

eralized regression networks ( GRN
rize, the general classification procedure has three
steps, as follows;

i. Map high dimensional data into a lower dimen-
sional space using an S-NLDR method.

ii. Find mapping function for out-of-sample data
points using an estimation method or GRN.

iii. Map the given query to low dimensional space
using the mapping function and then predict its class

label using K-NN.

2 Multinomial logistic regression

Multinomial logistic regression ( MLR) is used to
model the relationship between a multiple response var-
iable and one or more predictor variables, which may
be either discrete or continuous'””’. Let ¥ be a poly-
chotomous random variable denoting the outcome of

some experiment, and let X = (x,,x,,"-",x,,) be a
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collection of predictor variables. Then the conditional

probability of outcome P(Y = 1/X) is presented by

(%) , where
m(x) =
exp(Bo + Bixy + By + - + Byoi%pey)
1 + exp(By + Bi%; + Br%, + *= + Byi%,mr)

If the x; are varied and the n valves Y, ,Y,,--,Y, of ¥
are observed, we write
T =
exp(By + Bi%u +Ba%n + 0 + BypoiFpot)

1 + exp(By + Bixy + Poxy + = +Bp—1xip—1).

The problem is now to obtain an estimate of the
vector 8= (By,By, *»B,-1). As the number of signifi-
cant predictor variables increases the predicted class

MLR is a modal
based approach and provides classification probability

probability becomes more accurate.

for individual objects as compared to the KNN method ,
which gives classification membership. We use U-NLDR
methods to map the high dimensional image data into
low dimensional subspace and then use an MLR model
to estimate the classification probability for out-of-sam-
ple data points. The low dimensional embedded values
are taken as an independent predictor variable. In con-
trast, class membership values are taken as values of
the dependent variable Y . Since all the NLDR methods
use eigen decomposition, the independence of predictor
variables is obvious. We increase the number of predic-
tor variables by increasing the dimensions of the embed-
ded subspace to obtain more accurate estimates of §.
An increase of predictor variables also give rise to the
problem of including irrelevant or less important varia-
bles in the model. This problem is handled by checking
the significance of the selected model and including the
most important or significant predictor variables in the
final model.

The procedure is summarized as follows ;

i. Map high dimensional data into lower dimen-
sional subspace using the U-NLDR method.

ii. Apply MLR to find a classification model.

iii. Find low dimensional mapping for out-of-sam-
ple data points using an estimation method or GRN.

iv. Find classification probability for out-of-sample
data points by applying the MLR model obtained in
(ii), and assign new data points to the class having

maximum probability.

The flowchart is shown as Fig. 1.
Input high Input high
dimensional dimensional
training data test data

Find low dlmensmnal
mapping of test data using
estimation method

Find low dimensional
imapping using U-NLDR
method

l

Find classification
model using MLR

Find classification
probability for low
dimensional test data

i

Assign low
dlmensmnal test data
to appropriate clas

Output
cla551ﬁcat10n
error rate

Fig. 1 Flowchart of U-NLDR + MLR algorithm

3 Performance evaluation

The most commonly used performance evaluation
criteria for classification is the ER. If unlimited cases
for training and testing are available, the error rate is
simply the error rate on the test cases. The simplest
technique for estimating error rates, the holdout meth-
od™’ | is a single training and test experiment. The
sample cases are broken into two groups of cases; a
training group and a test group. The classifier is inde-
pendently derived from the training cases, and the er-
ror estimate is the performance of the classifier on the
test cases. A single random partition of training and
test cases can be somewhat misleading. Random resa-
mpling can produce better estimates than a single train
and test partition.

In this study, we used a 10-fold cross validation
resampling method to find the error rate. That is, the
original data set was randomly divided into ten equal-
sized subsets. Then in each iteration, one subset was
used as testing set and the union of the remaining ones
was used as the training set. After ten iterations, the

average result was taken as the final ER. For Olivitief-

aces and the Liibeck University face images database,
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we used the leave-one-out resampling method due to

the small number of images available for each person.

4 Test data

For the purpose of experimentation, we used sev-
en different image and non-image datasets in this stud-
y. A brief description is given below;

i. The Yale face database-B; This dataset consists
of images of 10 subjects,each seen under 576 viewing
conditions (9 poses X 64 illumination conditions). For
this study, we use 567 images of three persons (9 po-
ses X 21 illumination conditions). The images are
cropped and dimension reduced to 36 x 32. Fig. 2

shows some sample images.

Fig.2 Sample images from Yale-B database
ii. UMIST face images: This database consists of

564 images of 20 people. Each covers a range of poses
from profile to frontal views. Again we use images of 3
persons. Dimension reduced to 45 x37. Fig. 3 shows

sample images of first subject.

Fig.3 Sample images from UMIST database

iii. MNIST handwritten digits; MNIST handwritten
digits consists of grayscale images of “0” through “9”.
The images are digitized as 28 x28. We use 500 images
of digits 1, 3 and 4. Fig.4 shows sample images.

Fig.4 Sample images from MNIST database

iv. Olivettiefaces database; The Olivettiefaces da-
tabase consists of 400 images of 40 persons with differ-

ent poses and expressions. We use images of 6 differ-

ent persons. Image dimensions are 64 x 64. Fig. 5

shows some sample images.

Fig.5 Sample images from Olivettiefaces

v. Liibeck University face images; This database
consists of face images of 31 persons, 13 images each,
with different expression and light conditions. We use
images of 5 persons. Images dimensions are 36 x 48.

Fig. 6 shows some sample images.

Fig.6 Sample images from Liibeck Uni. database

vi. UCI Isolet data set; This data set consists of
617 different features of spoken alphabets by 150 ob-
jects. Every subject speaks each alphabet twice. We
use all instances of letters G, H, I, J, K and L.

vii. UCI optical digits: This data set consists of
normalized bitmaps of handwritten digits (0 ~9) from
a preprinted form. Total number of attributes are 64,

whereas the total number of instances are 5 620.

5 Methodology

For a comparison between supervised versions of
NLDR and U-NLDR + MLR, we ran six U-NLDR
methods , namely Isomap, LLE, HLLE (results are not
presented here due to very poor performance for all the
data sets), LE, Diffusion Maps and LTSA. To find
low dimensional embedding for out-of-sample test data,
both estimation and GRN methods were used. In order
to select significant predictor variables in the MLR
model, we used the Wald test !'*).

Under supervised NLDR we use four methods,
namely WeightedIso, S-Isomap, SLLE and SLTSA. In
the following experiments, the number of neighborhood
points K was taken as 8 and 10, for both supervised
and unsupervised methods. These values of K are most
commonly used by different researchers. In our experi-

ments these values were optimal ones for given data
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sets. Target dimension d varied from 2 to K. The pa-
rameter A in WeightedIso was set to 10, the parameter
o in S-Isomap was set to 0.5 and 8 was set to average
the Euclidean distance of all pair-wise distances.
These optimal parameter values we those suggested by
other authors. The value of @ in SLLE was 1 to make
full use of class information, whereas the value of p in
SLTSA was set to max( D). To predict class labels, the
K-NN method was used.

Table 1 shows details about the number of catego-
ries, the number of images and the sampling methods
used for different datasets.

Table 1 Summary information of datasets used

No. of cate- No. of Sampling
Dataset
gories used samples method
Yale-B 3 550 10-fold
UMIST 3 100 10-fold
MNIST 3 500 10-fold
Olivettiefaces 6 60 Leave-one-out
Litbeck Uni. 5 65 Leave-one-out
UCI Isolet 6 1620 10-fold
UCI Optdigit 6 1 000 10-fold

6 Experimental results and analysis

We ran all supervised and unsupervised algo-
rithms for the seven above mentioned data sets. Results
for K =10 were marginally better than K = 8, especial-
ly for supervised classification methods. As an out-of-
sample mapping function, estimation method performed
slightly better than GRN for both unsupervised and su-
pervised methods. Keeping the above in mind, we
presented resulis only for K =10, and with the estima-
tion method as the mapping function. On a few occa-
gions, we also presented resulis for K =8, but only
when it gave better results.

Table 2 shows percentage mean error rate
(PMER) for 10-fold resampling and d =2, for select-
ed S-NLDR methods. S-Isomap produced disconnected
geodesic distance graphs for all the data sets except Ol-
ivettiefaces. Table 3 ~ 9 show PMER for 10-fold or
leave-one-out resampling for U-NLDR + MLR. Target
dimensions varied from 2 to K. For every algorithm,

the best performance is in bold.

Table 2 PMER for supervised NLDR Methods ( d =2) %

Weight-
Datasets S-Isomap SLLE SLTSA
edlso
Yale faces ( K =10) 0.0 - 0.0 0.0
UMIST faces ( K =10)  26.0 - 26.0 26.0
MNIST Digits ( K =10) 1.8 - 0.0 1.6
Olivetitiefaces ( K =8) 1.7 0.0 26.0 15.0
Litbeck Uni. ( K =8) 7.7 - 1.6 0.0
UCI Isolet ( K =10) 18.1 - 21.7 21.4
UCI Optdigit ( K =10) 1.8 - 15.0 6.1
Table 3 PMER for Yale-B database %

Target dimension ( d )
Algorithm

2 3 4 5 6 7 8 9 10

Isomap 3.2 0.0 0.0 00 00 00 00 00 0.0
LLE 96 74 02 00 00 00 00 00 0.0
Laplacian 1.4 0.8 0.0 0.0 0.0 00 00 00 0.0
Diff. Maps 31.2 32.8 9.4 0.6 0.2 00 00 00 0.0
LTSA 146 148 6.6 1.6 0.8 0.2 10.8 60.8 64.6

Table 4 PMER for UMIST database %

Target dimension ( d )

Algorithm
2 3 4 5 6 7 8 9 10

Isomap 2.0 L0 1.0 1.0 1.0 20 20 20 L0
LLE 8.0 1.0 13.0 L0 10 10 LO 2.0 2.0
Laplacian 1.0 1.0 2.0 1.0 1.0 L0 LO LO 2.0
Diff. Maps 9.0 1.0 6.0 1.0 L0 1.0 L0 LO LO

LTSA 1.0 1.0 00 0.0 8.0 18.0 29.0 46.0 60.0
Table 5 PMER for MNIST database %
Target dimension ( d )
Algorithm

2 3 4 5 6 7 8 9 10

Isomap 11.0 86 7.2 7.6 7.4 6.6 54 56 5.2
LLE 8.4 50 48 48 54 54 50 52 5.0
Laplacian 10.6 6.0 5.6 56 56 356 5.4 54 5.6
Diff. Maps 5.4 56 5.6 5.2 52 52 48 4.4 4.4
LTSA  30.6 20.2 8.4 9.8 82 21.8 29.8 60.8 9.0

Table 6 PMER for Olivettiefaces %

Target dimension ( d )

Algorithm
2 3 4 5 6 7 8 9 10

Isomap 16.7 10.0 8.3 8.3 13.7 85 5.0 44 4.0
LIE 28.3 18.3 18.3 30.0 350 5.7 25 L1 4.0

Laplac.
20.0 13.3 40.0 68.3 46.7 25.7 10.0 - -
(K=8)

Diff. Maps 48.3 36.7 35.0 6.67 3.33 1.43 1.25 7.78 1.0

LTSA
25.0 6.7 40.0 20.0 40.0 48.0 57.5 - -
(K=8)
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Table 7 PMER for Liibeck University dataset %

Target dimension ( d )

Algorithm
2 3 4 5 6 7 8 9 10

Iomsp 215 3.1 L5 00 0.0 00 00 00 0.0

LE 262 2.5 9.2 0.0 0.0 0.0 0.0 0.0 0.0
Laplacian 20.0 10.8 4.6 0.0 0.0 0.0 00 00 0.0
Diff. Maps 32.3 4.6 3.1 0.0 0.0 00 00 00 0.0

LTSA 32,3 26.2 23.1 169 12.§ 11.0 18.3 29.9 27.7

Table 8 PMER for UCI Isolet dataset %

Target dimension ( d )

Algorithm
2 3 4 5 6 7 8 9 10

Iomap 17.4 15.6 14.7 9.9 19 83 7.6 72 6.7

56.2 49.4 4.4 377 284 3.2 438 - -
(k=8)

Laplac.
(h=8) 31.8 27.8 24.4 18.0 259 26.1 34.6 - -

Diff. Maps 17.0 11.1 11.2 85 89 81 7.7 83 -
LTSA  30.3 32.2 33.7 38.7 38.2 46.6 38.9 63.4 86.1

Table 9 PMER for UCI optical digits dataset %

Target dimension ( d )

Algorithm
2 3 4 5 6 7 8 9 10

Ioomsp 25.0 7.3 3.9 25 23 22 21 L7 19

LIE 168 11.6 9.2 39 38 58 38 23 3.0

Laplacian 24.5 6.9 10.3 143 2.9 3.1 26 3.2 2.7
Diff. Maps 62.2 46.7 38.5 44.3 42.2 37.2 357 17.0 19.7

LTSA 20,8 17.8 17.9 7.5 9.9 12.1 426 72.2 82.1

In order to find out significant predictor variables
(target dimensions) for a given method, we applyied
the Wald test and then selected the most significant
subset of predictor variables. Tables from 10 to 16
present PMER for different algorithms, along with re-
duced dimensions, which are in parenthesis below the
PMER values. A quick overview of these tables reveals
that for most of the datasets, the value of PMER very
quickly reaches its minimum value along with the opti-
mal number of significant predictor variables. The val-
ue of PMER fluctuates around this minimum value even
if we continue to include additional predictor variables
( dimensions ) in the MLR model. For LTSA, howev-

er, the value of PMER increases with increased target
dimensions after it touches the minimum value. It
ghould be kept in mind that reduced dimensions do not
represent first d dimensions, rather these are best sub-
sets selected from actual full dimensions. Table 17 pro-
vides a summary comparison between PMER under full
and reduced MLR models. In most cases, the reduced
MLR model provides same accuracy, even better in

some cases, with decreased dimensions compared to
the full MLR model.
Table 10 PMER for Yale-B DB under reduced dimensions

%
Actual dimension
Algorithm
2 3 4 5 6 7 8 9 10
204 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Isomap

1 @ 6 6 6 6 6 6 6)

142 13.2 36 00 00 00 00 00 0.0

LLE
Mm@ @ 6 6 6 6 6 6
Lalac 21,2 50 1.0 1.0 L0 1.0 1.0 L0 L0
PR o0 6 6 0
30.2 32.8 8.8 2.0 1.2 0.0 0.0 0.0 0.0

Diff. Maps
M @ @ @ 6 6 6 6 6
21.0 22.2 14.6 3.2 0.6 0.0 12.6 72.4 72.4

LTSA
M @ @ @ @ & 6 0 ©
Table 11 PMER for UMIST DB under reduced dimensions
%

Actual dimension

Algorithm
2 3 4 5 6 7 8 9 10
. 1.0 1.0 1.0 1.0 1.0 1.0 10 110 1.0
"o e e 6 6
LE 24.0 80 29 1.7 95 63 1.7 1.0 1.0
Hm @O e 0 e @ @
0 30 30 40 40 3.0 30 30 3.0

Laplacian
DWW OO OO O
2.0 9.0 30.0 1.0 1.0 1.0 1.0 1.0 1.0

Diff. Maps
Mm@ @ 6 6 6 6 6 6
10.0 10.0 1.0 10.0 5.0 26.0 34.0 59.0 5.0

LTSA

1 @ G @ @ @ 6 (0 (©
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Table 12

PMER for MNIST DB under reduced dimensions
%

Algorithm

Actual dimension

Isomap

21.4 104 82 78 7.0 58 56 6.0 5.6
1 @ @ & 6 6 6 6 6

10.6 7.8 5.2 52 52 54 50 52 5.0

LLE
O @ 1 3 @ @ 6 6 (6
Laolac 13.8 8.4 6.0 60 56 54 54 52 5.2
P L @ 3 G @) & (3) (6 (6)
13.0 13.0 6.8 54 54 50 52 4.6 4.8
Diff. Maps
O @O @ G @2 @ @ ©’ ™
40.0 45.0 11.8 14.0 13.4 28.6 33.0 63.0 63.4
LTSA
n @O @ @ 6 6 0O W O
Table 13 PMER for Olivettiefaces under reduced dimen-
sions %
Actual dimension
Algorithm
2 3 4 5 6 7 8 9 10
; 33.3 18.3 8.3 6.7 6.7 57 6.2 4.4 4.0
P L @ 3 @ 6) . (6) (5) (5
UE 43.3 16.7 11.7 150 3.3 8.5 25 2.0 4.4
n 2 3 G @ @ 6 6 6
Laplacian 40.0 15.0 20.0 10.0 21.7 10.0 7.5
(K=8) (1) (@) @) @3) (55 (6) (6)
63.3 40.0 15.0 5.0 3.3 43 25 22 3.0
Diff. Maps
H 2 3 @ @ @G W @ 6
LTSA  51.7 30.0 38.3 15.0 16.7 4.3 17.5
(K=8) (1) 2 (3 & ) & (M
Table 14 PMER for Liibeck Uni. under reduced dimen-
sions %
Actual dimension
Algorithm
2 3 4 5 6 7 8 9 10
. 4.6 33.8 3.1 00 0.0 0.0 0.0 0.0 0.0
P H 2 3 @ ¢ W W@ W
UE 47.7 354 13.8 46 6.3 0.0 0.0 0.0 0.0
nH 2 B3 @ @ 6 6 6 6
27.7 16.9 6.2 0.0 0.0 0.0 0.0 0.0 0.0
Laplacian

(1 @ 6 @ ¢ @ ¢ ¢ @

After table 14
Actual dimension
Algorithm
2 3 4 5 6 7 8 9 10
4.5 29.2 12.3 6.2 26 1.1 1.9 1.7 1.5
Diff. Maps

1 @ 6 ¢ & @ @& ¢

gy b3 LS 23277192 121 192 402 400
n @ ¢ 6 @ 6 O 0 ©

Table 15 PMER for UCI Isolet DB under reduced dimen-

sions %

Actual dimension

2 3 4 5 6 7 8 9 10

Algorithm

2.1 19.8 15.6 11.2 10.1 85 7.3 173 6.9
nH @ G @ 6 © © @) 3

LIE  70.3 53.4 364 20.1 18.9 20.2 24.6
(k=8) (1) (2 G) “) (5) () (6)

Isomap

51.9 30.7 28.0 15.0 16.4 15.2 15.0
(k=8) (1) (2 @ ‘) @ ¢ ¢

Laplacian

41.0 154 13.1 10.0 89 86 7.8 87 1.8
Diff. Maps
1 @ @) @& 6 ® @O 6 O
LIS 47.5 34.0 35.6 33.7 32.8 33.5 41.4 68.9 87.1
1 @ @ 6 G @& 6 (€ (0
Table 16 PMER for UCI Optdigit under reduced dimen-
sions %
Actual dimension
Algorithm
2 3 4 5 6 7 8 9 10
25.0 7.3 39 25 23 22 21 L7 1.9
Isomap

n @ G @ 6 . 0O 7 6
qp 68 197 1L0 41 45 58 30 28 3.0

nH @ G @ 6 © © 7 @)

83.1 80.3 79.4
HLLE

nH @ G @ @ 65 © 6 @)

4.5
Laplacian

6.9 10.3 143 29 3.1 26 32 27
n @ @ @) 6 6 (© (©) (6

62.2 46.7 38.5
Diff. Maps

4.3 42.2 17.0 18.3
© © @ @ 6 6 © 7 @)

20.8 17.8 17.9 7.49 9.9 12.1 7.2 82.1
n @ @ @& @ © 0O 6 0
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Table 17 Summary comparison between PMER under full and reduced MLR models %
Isomap LLE Laplacian Diff Maps LTSA
Datasets
e Actual dim. Reduced dim.  Actual dim. Reduced dim.  Actual dim. Reduced dim.  Actual dim. Reduced dim.  Actual dim. Reduced dim.

Yale - B 0.0(3) 0.0(3) 0.0(5) 0.0(3) 0.0(4) 1.0(2) 0.0(7) 0.0(35) 0.2(7) 0.0(5)
UMIST 1.0 (3) 1.0 (2) 1.0(5) 1.0(2) 1.0(2) 3.0(1) 1.0 (3) 1.0 (3) 0.0(4) 1.0(3)
MNIST 5.2 (10) 5.6 (5) 4.8(4) 5.0(5) 54(9) 5.2(6) 4.4(9) 4.6 (6) 8.2(6) 11.8(3)
Olivettiefaces 4.0 (10) 4.0 (5) 1.1(9) 2.0 (5) 10.0 (8) 7.5 (6) 1.0 (10) 2.2 (4) 6.7(3) 4.3(5)
Libeck Uni. 0.0 (5) 0.0 (4) 0.0(5) 0.0(5) 0.0(5) 0.0(4) 0.0 (5) 1.1 (4) 1.0 (7) 12.1(5)
UCI Isolet 7.2(9) 6.9(8) 28.4 (6) 18.9 (5) 18.0 (5) 15.0 (4) 1.708) 1.8(7) 30.3(2) 32.8(3)
UCI Optdigit 1.7 (9) 1.7(7) 2.3(9) 2.8(7) 2.6 (8) 2.6(6) 17.0 (9) 17.0(7) 7.5(5) 9.9(4)

7 Conclusion

An overview of the above tables reveals that no
single algorithm, using supervised or unsupervised
methods, performed best for all datasets. Among S-
NLDR methods, WeightedIso has a slight edge on other
methods. In contrast, S-Isomap failed to produce
meaningful low dimensional embedding in most cases.
Among unsupervised NLDR methods, Isomap and LLE
performed better than other methods.

While comparing U-NLDR + MLR with S-NLDR
we observed that for Isomap and LLE , U-NLDR + MLR
performed far better than S-NLDR, whereas for LTSA
it was other way round. The U-NLDR + MLR frame-
work also produced promising results for Laplacian and
diffusion maps by providing comparable results with
other supervised and unsupervised methods.

The overall performance of U-NLDR algorithms in
conjunction with MLR leads us to the following general
conclusions ;

i. The use of MLR in conjunction with unsuper-
vised NLDR methods can be used as a general frame-
work for classification purposes, especially for LLE,
Isomap, LE and Diffusion Maps. It overcomes the
need for developing different supervised versions for
different NLDR methods.

ii. For all the algorithms, except LTSA, error
rates decreased as the target dimensions approached
K.

iii. Suitable number of target dimensions depends
on the properties of datasets and may vary from 3 to K .
Best subsets can be obtained by selecting significant
variables for the MLR model.
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