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Abstract ; Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic

and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore,

it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the com-

plete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which

achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The

objective of this paper is to discuss biologically inspired networking technologies.
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In our everyday life we are surrounded by a huge
number of information processing devices, such as per-
sonal computers, mobile phones, video game consoles,
television sets, digital video recorders, automatic teller
machines, and vending machines, which are directly
or indirectly connected to networks and provide us with
a variety of networked information services. With the
advancement of mobile phone technology and the pro-
liferation of new devices, such as RFID (radio fre-
quency identification ), new networked information
services are expected to emerge in the very near future
and more diverse types of information will be ex-

changed between these devices.

1 Introduction

To accommodate such large numbers of heteroge-
neous types of devices and the tremendous amount of
traffic they generate, information networks are becom-
ing more complex and sophisticated. Following design
methodologies for conventional network architectures,

networks are usually optimized for best performance
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based on an estimation or prediction of the number of
users and their behavior, the amount of traffic they will
produce, and the expected operational environment.
Furthermore, in order to improve their robustness, net-
works are equipped with failure recovery mechanisms
based on predictions of the type, magnitude, and dura-
tion of possibly occurring failures, and they are de-
ployed with additional tolerance margins to treat further
exceptional cases. Therefore, such conventional net-
works can operate in a desired way as long as the oper-
ational conditions are within the expected range. Un-
fortunately, they are vulnerable and may easily col-
lapse once an unexpected amount of traffic or unexpect-
ed demand is encountered, either due to abuse, at-
tacks, or unexpected failures for which the network was
gimply not prepared. Furthermore, due to the enor-
mous complexity of such networks, it may take a sub-
stantial amount of time to recover from such failures.
Taking into account the diversity and unpredict-
ability of the operational environment, future informa-
tion networks need to be capable of maintaining a high
level of scalability, adaptability, and robustness. Re-
cently, the field of biologically inspired networking has
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been atiracting many researchers and developers, since
it appears highly promising as a means to establish
more scalable, adaptive, and robust information net-
works. The source of the emergence of scalability, a-
daptability, and robustness in biological systems is
their inherently self-organizing structure. Global and
collective behavior of a self-organizing system is
reached through local interactions among the entities
constituting the system. Each entity operates on a set
of simple rules and behaves in accordance with entirely
local information that can be obtained through observa-
tion of its local surroundings and communication with
its neighbors. Bonabeau et al'"! state four principles of
self-organization. These principles are; positive feed-
back to reinforce good control; negative feedback to
suppress overshooting and provide stabilization; direct
and/or indirect interactions among entities; exploita-
tion of fluctuations to leap from local suboptimal solu-
tions.

A self-organizing system does not have a central-
ized control unit dominating the whole system; emer-
gence of controllers lies in the nature of self-organiza-
tion. Owing to this fact, a self-organizing system has
high adaptability and robusiness; however, this is at the
cost of performance. When the operational conditions
stay within the expected range, a conventional and opti-
mally designed system on a centralized architecture a-
chieves better performance and is superior to a self-or-
ganizing system as intuitively illustrated in Fig. 1.

However, we argue that this lower performance
will eventually be compensated for by advancements in
network technologies, such as increases in channel ca-
pacity and the development of new devices. Instead,
we would do better directing our attention to the adapt-
ability and robustness of self-organizing systems rather
than to their performance. In fact, self-organizing bio-
logical systems are not structured to achieve optimal
performance since they must continue to slowly evolve
while adapting to a dynamically changing environment.
There are always some spare or even idle resources and

sometimes even inefficient control can be observed.

Such unused resources are the source of adaptability
and robustness, and similar strategies of tradeoffs be-
tween quantity and quality will also be essential for fu-
ture network technologies.

Performance
A conventional network

bio-inspired self-organizing
etwork

number and scale of failures, degree of changes: -

Fig. 1

Comparison of self-organizing networks and conven-
tional networks. Self-organizing networks should be
inferior in performance to conventional networks un-
der ideal conditions, but show greater resilience un-

der unexpected conditions.

Although it is also possible for a conventional sys-
tem to improve its adaptability and robusiness by intro-
ducing additional and redundant network resources and
more sophisticated recovery mechanisms, this would
only result in a slight shifting of the critical point to the
right in Fig. 1, remaining far below the range of adapt-
ability and tolerance that a self-organizing system pos-

SESSEs.

2  Lessons from biological dynamics

Biological systems are highly dynamical systems.
They control, regulate, and adapt themselves accord-
ing to observations of their dynamically changing sur-
roundings, their internal condition, and their interac-
tion with neighboring organisms, e. g. , individuals or
cells.

2.1 Self-organizing network control inspired by
swarm intelligence

Swarm intelligence is organized collective behavior
emerging from local interactions among simple agents in
a colony of social insects such as ants or bees'" .

One of the well-known examples of swarm intelli-
gence is the foraging behavior of ants, which find the

gshortest path from their nest to a food source through
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indirect interaction among each other mediated by
pheromone trails (see Fig. 2). The underlying theo-
retic model, called ant colony optimization ( ACO) 2] s
is known as a heuristic for the travelling salesman prob-
lem (TSP) and has been successfully applied in rou-

ting protocols, for example, AntNet'’.

phase stimuli

pheromone #
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phase”response cury

establishment of shortest path pulse—coupled oscillator model
by pheromones and flashing freflies

Fig.2 Examples of swarm intelligence: foraging ants and

synchronously flashing fireflies

Another similar example shown in Fig. 2 can be
found in the interactions of groups of fireflies or crick-

) Some species of fireflies exhibit synchronized

ets
behavior in flashing. A firefly periodically flashes ac-
cording to its intrinsic timer when it is not interacting
with other fireflies. However, when fireflies form a
group, a flash of one firefly stimulates others in its vic-
inity. Stimulated fireflies advance the phase of their
own timer by a small amount. In this way some ad-
vance their timer just enough to flash concurrently. By
stimulating each other repeatedly, they eventually be-
gin to flash simultaneously and at the same regular in-
terval. Pulse coupled-oscillator (PCO) is a mathemati-
cal model which explains the emergence of synchroni-
zation in a group of fireflies'™.

Since synchronization and scheduling is indispen-
sable for effective and efficient network operation, sev-
eral conirol mechanisms have been developed based on
the PCO model. For example, by adopting the PCO
model, wireless sensor nodes can schedule message e-
missions so that they will not cause collisions among
each other on the wireless channel. Additionally, ef-
fective sleep scheduling based on synchronization leads
to higher throughput, smaller delays, and longer life-

) ) ) 6
times in a wireless sensor network'®’.

In the case of swarms of bees, they efficiently
share roles within their colony, such as foraging and
nesting, based on needs without any centralized con-
trol. In the response threshold model, each individual
has a threshold which expresses their willingness or
hesitation to perform a given task'"’. When demand for
a task exceeds this threshold, there is a high probabili-
ty an individual will become engaged in the task. In
addition, there is a reinforcement mechanism which
generates specialists for a certain task”’’. Once an in-
dividual has performed a task for a period of time, it
lowers its threshold for that task and becomes more
likely to perform the task in the future. This method of
division of labor gives the colony high resilience. When
individuals performing a certain task are eliminated,
others dedicated to another task eventually begin taking
over this task and as a result the appropriate balance of
role sharing is maintained. As an example, we can
consider the task of caching in a content sharing net-
work. The amount of cached content in the network
can be balanced, eventually resulting in excessively re-
dundant content being discarded and a smaller cache
being maintained®’ .

2.2 Network control inspired by biological mech-
anisms

Biological systems are organized in a hierarchical
structure; ecosystem, group, individual, organ sys-
tem, organ, tissue, and cells. Each level or layer is
self-organized within the biological system. A higher
layer entity is controlled and organized by interaction
and cooperation among lower layer entities.

The immune system is a complex system to protect
vertebrates from infection by pathogens. It distingui-
gshes self, such as cells from its own body, from non-
self, such as pathogens. It then attacks and eliminates
the non-self. In contrast to primary immunity, such as
skin and gastric acid, secondary immunity has a mech-
anism to learn and remember new pathogens and rein-
force itself. A model of the biological immune system
called an artificial immune system ( AIS)™’ has been

applied to detection and protection from denial-of-serv-
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ice (DoS) attacks '

. In this system, each node in a
network cooperates with other nodes to learn to distin-
guish between self and non-self, and to detect and
block non-self, or suspicious traffic. Security mecha-
nisms based on AIS are simple and easy to implement.
By placing many detectors in a network high adaptabili-
ty and robustness can be attained.

Living organisms such as animals and fishes have
a periodic pattern on their surface or coat. Certain pat-
terns are specific to a species and similar patierns are
generated independently of changes to the size or figure
of an individual. Even if a part of the pattern is lost
due to injury, it is eventually regenerated. Pattern gen-
eration is also a result of self-organizing morphogene-
sis, i. e., the chemical interaction of morphogens a-
mong cells. A reaction-diffusion model explains the
process of pattern generation. In this model, two hypo-
thetical chemical substances, called an activator and
an inhibitor, are synthesized, decomposed, and dif-
fused """, Through chemical reactions and diffusion of
the hypothetical morphogens, a heterogeneous spatial
distribution of morphogen concentrations emerges and a
pattern is generated. Depending on the functions and
parameters of the model, a variety of patterns such as
mazes , spots, and stripes can be generated as shown in
Fig. 3.

reaction—diffusion model
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Fig. 3  Reaction-diffusion based clustering in a wireless
sensor network. The distribution of clusters in a
wireless sensor network resembles a spot pattern

self-organized by the reaction-diffusion model

Taking inspiration from self-organized pattern gen-

eration, several applications to network control have

been proposed such as spatial time division multiple
access ( S-TDMA) scheduling[m , routing, and con-
tent distribution. In the case of clustering of wireless

a spot pattern is most suitable!.

sensor networks,
For saving energy consumed in long distance transmis-
gion of wireless signals and for efficient use of wireless
channel capacity, neighboring nodes form a group,
called a cluster. One representative node among them,
called a cluster head, takes responsibility for collecting
sensor data from the other nodes in the cluster, called
cluster members, and sends the collected data to a
sink. To balance the energy consumption, cluster
heads should be uniformly distributed within the moni-
tored region. Therefore, a spatial distribution of cluster
heads resembling the spot pattern of morphogen con-
centrations is most appropriate. Since the role of clus-
ter heads should be rotated among the nodes, it is best
to determine the initial morphogen concentrations de-
pending on the amount of residual energy of each
node. Afier a spot pattern emerges, the node with the
highest morphogen concentration becomes a cluster
head in that spot, or cluster. Forwarding data from
cluster members to a cluster head can be accomplished
by simply following the gradient of the morphogen con-
centration. A node sends data to the neighboring node
with the highest morphogen concentration. Eventually,
all data reaches the node with the highest morphogen
concentration in the cluster-the cluster head.

All bio-inspired network control mechanisms intro-
duced in this section are based on the four previously
mentioned principles of self-organization. For example,
in a reaction-diffusion based clustering mechanism,
nodes interact with each other through diffusion of mor-
phogens. This results in positive and negative feedback
in the chemical reactions of the morphogens, resulting
in activation and inhibition, and the pattern fluctuates
due to dynamically changing residual energy so that the
pattern generated does not always remain the same.

However, there is still a lot of room for further in-

vestigation in this field. For example, nesting of in-

sects, schooling of fish, flocking of birds, heat shock
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responses, cell differentiation and biological symbiosis
can also provide basic models for self-organizing net-

work control mechanisms.

3 Noise-assisted adaptation

Biological systems are inherently noisy and within
a group of biological organisms there are no absolutely
identical individuals. Cells constituting a tissue are dif-
ferent from each other in terms of the amount of sub-
stances, even if they all play the same role. Further-
more, biological systems continuously keep changing
and even the level of diversity within the population
does not stay the same. As stated in Section 1, noise
or fluctuation is one of the main principles for self-or-
ganization. It helps a system to leap from local minima

and adapt to new environments.

enviromment changes
good atractor changes

activity
activity
<D

attractor  activity decreases

random walk and

system state AR
finding new attractor

Fig. 4 Attractor selection model. The system is driven by

fluctuations to find a new good attractor.

The atiractor selection scheme is a model of the
adaptation mechanism in the genetic expression of E.
coli cells as they respond to environmental changes in

. - [14
nutrnent concentratlon[ ].

Although a cell may not
have signal transduction pathways for adapting to all
possible events occurring outside, it can automatically
adjust its state of gene expression in order to increase
its activity or growth rate when facing an environment
with very low nutrient levels. The stochastic Langevin-
type of differential equation shown below describes how
the dynamics of the messenger RNA (mRNA) concen-
tration X in an E. coli cell is composed of a determinis-
tic control function and a term reflecting the inherent

noise in gene expression.

dX _
d =f(X) xa+mn.

The deterministic control function f is multiplied
with a parameter , called activity, which corresponds to
the growth rate of the cell. When an appropriate attract-
or, i.e. , a stable gene expression state for the current
nutrient condition is reached, the activity becomes high
and as a result the deterministic control dominates the
dynamics of X so that its state remains at this attractor in
spite of existing fluctuations. However, once the nuiri-
ent conditions change and the chosen atiractor becomes
no longer suitable, activity decreases and the noise term
is dominating. The system begins to look for a new good
attractor by randomly searching in the phase space.
When it eventually approaches a suitable attractor, the
activity begins to increase again and the deterministic
control driving the gene expression X towards the good

attractor is reinforced, see Fig.4 and 5.
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Fig. 5 Attractor selection-based multipath routing. As the

activity becomes high, one appropriate path is pref-
erably chosen with a higher selection probability
Future information networks will often face unex-
pected, unpredicted, and irresolvable conditions due
to the number of connected users and devices, the di-
versity in usage, behavior, and traffic patterns, as well
as their temporal variations. Therefore, a conventional
design methodology, which prepares for recovery and
adaptation of predictable failures and changes, is no
longer valid. The attractor selection model is a power-
ful means of making a network adaptive and robust in
such environments, since it does not require any pre-
configured recovery and adaptation mechanisms. It has

been applied to routing and topology control'™*’ | for ex-
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ample, an attractor selection-based routing mechanism
outperformed other conventional routing mechanisms in

unreliable and unstable wireless network scenarios.

4  Conclusion

Information networks that have been designed,
built, and operated based on self-organizing biological
models achieve a high level of scalability, adaptability,
and robustness. Some biological mechanisms intro-
duced in this paper are modeled by nonlinear temporal
differential equations. The formalism available through
these equations permits a mathematical and theoretical
treatment and analysis of the stability and convergence
properties of bio-inspired networks. Furthermore, we
should design and build network control mechanisms by
extending models from mathematical biology, exploiting
well established theories from physics and mathemat-
ics, not merely mimicking or imitating the behavior of
actual biological systems.

However, we should also note that the self-organi-
zation mechanisms mentioned in this paper are, on
their own, not fully sufficient to establish scalable, a-
daptive, and robust information networks, which pro-
vide users and applications with network services ap-
propriate for levels of demand and environmental condi-
tions. We also need to develop, for example, self-con-
figuration mechanisms which recognize current system
conditions and cause the network to reconfigure itself.
Furthermore , it is necessary to consider how interaction
among different self-organizing entities may detrimen-
tally affect each other and bring instability. Currently,
we are further investigating such mechanisms, as dis-
cussed in this paper, within the scope of the research
projects “ Special Coordination Funds for Promoting
Science and Technology: Yuragi Project” and “Global
COE ( centers of excellence) Program for Founding
Ambient Information Society Infrastructure” of the Min-
istry of Education, Culture, Sports, Science and Tech-

nology, Japan.
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