[1]邬霞,李锐,封春亮.基于智能计算的脑机制研究[J].智能系统学报,2021,16(5):850-856.[doi:10.11992/tis.202103029]
 WU Xia,LI Rui,FENG Chunliang.Brain mechanism research based on intelligent computing[J].CAAI Transactions on Intelligent Systems,2021,16(5):850-856.[doi:10.11992/tis.202103029]
点击复制

基于智能计算的脑机制研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年5期
页码:
850-856
栏目:
吴文俊人工智能自然科学奖一等奖
出版日期:
2021-10-05

文章信息/Info

Title:
Brain mechanism research based on intelligent computing
作者:
邬霞12 李锐3 封春亮4
1. 北京师范大学 人工智能学院,北京 100875;
2. 教育部 智能技术与教育应用教育部工程研究中心,北京 100816;
3. 中国科学院心理研究所 健康与遗传心理学研究室,北京 100101;
4. 华南师范大学 心理学院,广东 广州 510631
Author(s):
WU Xia12 LI Rui3 FENG Chunliang4
1. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China;
2. Intelligence Technology and Education Engineering Research Center, Ministry of Education, Beijing 100816, China;
3. Health and Genetic Psychology Research Laboratory, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China;
4. School of Psychology, South China Normal University, Guangzhou 510631, China
关键词:
脑机制神经影像功能磁共振智能计算脑连接脑疾病脑认知脑网络
Keywords:
brain mechanismneuroimagingfMRIintelligent computingbrain connectivitybrain diseasebrain and cognitionbrain network
分类号:
TP391
DOI:
10.11992/tis.202103029
摘要:
解析脑认知原理和脑疾病的发病机制已是当下脑科学研究的热点。智能计算在脑影像领域的应用可为认知心理学研究、脑疾病的识别和干预以及类脑智能理论研究等提供借鉴和参考。本文介绍利用智能影像计算方法在识别脑认知网络成分、构建脑有向连接模型、预测认知行为变化、构建心理过程神经表征等方面的工作,并对未来相关研究进行展望。
Abstract:
Unveiling the mechanism of brain cognition and the pathogenesis of brain diseases has become a hot spot in today’s brain science research. The application of intelligent computing in brain imaging can provide theoretical and practical references for many studies including cognitive psychology, identification and intervention of brain diseases, and the theoretical research on brain-like inspired intelligence. This paper introduces an intelligent neuroimaging computing method for the identification of brain cognitive network components, the construction of brain directed connection models, the prediction of cognitive changes and the construction of neural representation of psychological process, and looks forward to the related research in the future.

参考文献/References:

[1] WANG Q, MENG L, PANG J, et al. Characterization of EEG data revealing relationships with cognitive and motor symptoms in Parkinson’s disease: A systematic review[J]. Frontiers in aging neuroscience, 2020, 12: 373.
[2] SADI M U, LANGELLA S, GIOVANELLO K S, et al. Accrual of functional redundancy along the lifespan and its effects on cognition[J]. NeuroImage, 2021, 229: 117737.
[3] YANG T, DONG X, LEI X. Hard to initiate sleep: a new paradigm for resting-state fMRI[J]. Cognitive neurodynamics, 2021: 15(1): 1–9.
[4] HAMA T, KOEDA M, IKEDA Y, et al. Bupropion increases cerebral activation in auditory affective processing: A randomized controlled fMRI study[J]. Neuroscience letters, 2021, 749: 135716.
[5] GORDON I, VOOS A C, BENNETT R H, et al. Brain mechanisms for processing affective touch[J]. Human brain mapping, 2013, 34(4): 914–922.
[6] 蒲慕明. 脑科学研究的三大发展方向[J]. 中国科学院院刊, 2019, 34(7): 807–813
PU Muming. Three development directions of brain science research[J]. Bulletin of Chinese academy of science, 2019, 34(7): 807–813
[7] APKARIAN A V, BUSHNELL M C, TREEDE R D, et al. Human brain mechanisms of pain perception and regulation in health and disease[J]. European journal of pain, 2005, 9(4): 463–484.
[8] LIU Feng, WANG Shouyi, ROSENBERGER J, et al. A sparse dictionary learning framework to discover discriminative source activations in EEG brain mapping[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA, 2017.
[9] LI Kaiming, GUO Lei, NIE Jingxin, et al. Review of methods for functional brain connectivity detection using fMRI[J]. Computerized medical imaging and graphics, 2009, 33(2): 131–139.
[10] CHUNG T, NORONHA A, CARROLL K M, et al. Brain mechanisms of change in addiction treatment: models, methods, and emerging findings[J]. Current addiction reports, 2016, 3(3): 332–342.
[11] COMON P. Independent component analysis, A new concept?[J]. Signal processing, 1994, 36(3): 287–314.
[12] FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers[J]. Machine learning, 1997, 29(2/3): 131–163.
[13] TO?I? I, FROSSARD P. Dictionary learning[J]. IEEE signal processing magazine, 2011, 28(2): 27–38.
[14] LORD L D, STEVNER A B, DECO G, et al. Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders[J]. Philosophical transactions. series A, mathematical, physical, and engineering sciences, 2017, 375(2096): 1–21.
[15] TURK-BROWNE N B. Functional interactions as big data in the human brain[J]. Science, 2013, 342(6158): 580–584.
[16] LYNN C W, BASSETT D S. The physics of brain network structure, function and control[J]. Nature reviews physics, 2019, 1(5): 318–332.
[17] CALHOUN V D, ADALI T, PEARLSON G D, et al. A method for making group inferences from functional MRI data using independent component analysis[J]. Human brain mapping, 2001, 14(3): 140–151.
[18] LONDEI A, D’AUSILIO A, BASSO D, et al. Brain network for passive word listening as evaluated with ICA and Granger causality[J]. Brain research bulletin, 2007, 72(4/5/6): 284–292.
[19] WU Xia, LU Jie, CHEN Kewei, et al. Multiple neural networks supporting a semantic task: an fMRI study using independent component analysis[J]. NeuroImage, 2009, 45(4): 1347–1358.
[20] LI Rui, WU Xia, FLEISHER A S, et al. Attention-related networks in Alzheimer’s disease: a resting functional MRI study[J]. Human brain mapping, 2012, 33(5): 1076–1088.
[21] FERNANDEZ-DUQUE D, BLACK S E. Selective attention in early Dementia of Alzheimer Type[J]. Brain and cognition, 2008, 66(3): 221–231.
[22] BULLMORE E, SPORNS O. The economy of brain network organization[J]. Nature reviews neuroscience, 2012, 13(5): 336–349.
[23] ROEBROECK A, FORMISANO E, GOEBEL R. Mapping directed influence over the brain using Granger causality and FMRI[J]. NeuroImage, 2005, 25(1): 230–242.
[24] MUMFORD J A, RAMSEY J D. Bayesian networks for fMRI: a primer[J]. NeuroImage, 2014, 86: 573-582.
[25] LI Rui, CHEN Kewei, FLEISHER A S, et al. Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study[J]. NeuroImage, 2011, 56(3): 1035–1042.
[26] WU Xia, LI Rui, FLEISHER A S, et al. Altered default mode network connectivity in Alzheimer’s disease-a resting functional MRI and Bayesian network study[J]. Human brain mapping, 2011, 32(11): 1868–1881.
[27] LI R, WU X, CHEN K, et al. Alterations of directional connectivity among resting-state networks in Alzheimer disease[J]. American journal of neuroradiology, 2013, 34(2): 340–345.
[28] VIDAURRE D, SMITH S M, WOOLRICH M W. Brain network dynamics are hierarchically organized in time[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(48): 12827–12832.
[29] LI Rui, ZHU Xinyi, YIN Shufei, et al. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe[J]. Frontiers in aging neuroscience, 2014, 6: 39.
[30] LI Rui, ZHANG Jing, WU Xia, et al. Brain-wide resting-state connectivity regulation by the hippocampus and medial prefrontal cortex is associated with fluid intelligence[J]. Brain structure and function, 2020, 225(5): 1587–1600.
[31] CHAN R W, LEONG A T L, HO L C, et al. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(33): E6972–E6981.
[32] SOHEILI-NEZHAD S, JAHANSHAD N, GUELFI S, et al. Imaging genomics discovery of a new risk variant for Alzheimer’s disease in the postsynaptic SHARPIN gene[J]. Human brain mapping, 2020, 41(13): 3737–3748.
[33] LEVY J A, CHELUNE G J. Cognitive-behavioral profiles of neurodegenerative dementias: beyond Alzheimer’s disease[J]. Journal of geriatric psychiatry and neurology, 2007, 20(4): 227–238.
[34] PAN Yongsheng, LIU Mingxia, LIAN Chunfeng, et al. Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroImages[J]. IEEE transactions on medical imaging, 2020, 39(9): 2965–2975.
[35] HAO Xiaoke, BAO Yongjin, GUO Yingchun, et al. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease[J]. Medical image analysis, 2020, 60: 101625.
[36] LIU Cirong, YE F Q, YEN C C C, et al. A digital 3D atlas of the marmoset brain based on multi-modal MRI[J]. NeuroImage, 2018, 169: 106–116.
[37] CERCIGNANI M, BOUYAGOUB S. Brain microstructure by multi-modal MRI: is the whole greater than the sum of its parts?[J]. NeuroImage, 2018, 182: 117–127.
[38] GROVES A R, SMITH S M, FJELL A M, et al. Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure[J]. NeuroImage, 2012, 63(1): 365–380.
[39] SHAW L M, VANDERSTICHELE H, KNAPIK‐CZAJKA M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects[J]. Annals of neurology, 2009, 65(4): 403–413.
[40] XU Lele, WU Xia, LI Rui, et al. Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers[J]. Journal of Alzheimer’s disease, 2016, 51(4): 1045–1056.
[41] DAMASIO A R. How the brain creates the mind[J]. Scientific American, 1999, 281(6): 112–117.
[42] BROWN J W. Time, will, and mental process[M]. New York: Plenum Press, 1996.
[43] VAN OVERWALLE F. Social cognition and the brain: a meta‐analysis[J]. Human brain mapping, 2009, 30(3): 829–858.
[44] SETH A K, BARRETT A B, BARNETT L. Granger causality analysis in neuroscience and neuroimaging[J]. Journal of neuroscience, 2015, 35(8): 3293–3297.
[45] DESHPANDE G, LACONTE S, JAMES G A, et al. Multivariate granger causality analysis of fMRI data[J]. Human brain mapping, 2009, 30(4): 1361–1373.
[46] KóNYA L. Exports and growth: granger causality analysis on OECD countries with a panel data approach[J]. Economic modelling, 2006, 23(6): 978–992.
[47] STOKES P A, PURDON P L. A study of problems encountered in Granger causality analysis from a neuroscience perspective[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(34): E7063–E7072.
[48] FENG Chunliang, LUO Yuejia, KRUEGER F. Neural signatures of fairness-related normative decision making in the ultimatum game: a coordinate-based meta-analysis[J]. Human brain mapping, 2015, 36(2): 591–602.
[49] FENG Chunliang, DESHPANDE G, LIU Chao, et al. Diffusion of responsibility attenuates altruistic punishment: a functional magnetic resonance imaging effective connectivity study[J]. Human brain mapping, 2016, 37(2): 663–677.
[50] KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey[J]. Journal of artificial intelligence research, 1996, 4: 237–285.
[51] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. 2nd ed. Cambridge: MIT Press, 2018.

备注/Memo

备注/Memo:
收稿日期:2021-03-18。
基金项目:北京市自然科学基金项目(4212037)
作者简介:邬霞,教授,博士生导师,主要研究方向为脑机制探索、人工智能理论方法。吴文俊人工智能自然科学一等奖、教育部自然科学二等奖第一完成人。国家自然科学基金优秀青年基金获得者,主持国家级科研项目6项。发表学术论文100余篇。李锐,副研究员,博士生导师,主要研究方向为人脑信息处理机制探索、脑智发展与健康促进。主持国家级基金项目2项。发表学术论文50余篇;封春亮,副研究员,主要研究方向为社会规范的神经机制研究。博士后创新人才支持计划获得者,主持国家级科研项目2项。发表学术论文60余篇
通讯作者:邬霞.E-mail:wuxia@bnu.edu.cn
更新日期/Last Update: 1900-01-01