[1]黄庆康,宋恺涛,陆建峰.应用于不平衡多分类问题的损失平衡函数[J].智能系统学报,2019,14(05):953-958.[doi:10.11992/tis.201808004]
 HUANG Qingkang,SONG Kaitao,LU Jianfeng.Application of the loss balance function to the imbalanced multi-classification problems[J].CAAI Transactions on Intelligent Systems,2019,14(05):953-958.[doi:10.11992/tis.201808004]
点击复制

应用于不平衡多分类问题的损失平衡函数(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年05期
页码:
953-958
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Application of the loss balance function to the imbalanced multi-classification problems
作者:
黄庆康 宋恺涛 陆建峰
南京理工大学 计算机科学与工程学院, 江苏 南京 210094
Author(s):
HUANG Qingkang SONG Kaitao LU Jianfeng
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
不平衡学习不平衡数据分类多分类不平衡损失平衡不平衡数据分类算法不平衡数据集F1调和平均卷积神经网络深度学习
Keywords:
imbalanced learningimbalanced data classificationimbalanced multi-classificationloss balanceclassification algorithm for imbalanced dataimbalanced datasetF1 measureconvolutional neural networksdeep learning
分类号:
TP391
DOI:
10.11992/tis.201808004
摘要:
传统分类算法一般要求数据集类别分布平衡,然而在实际情况中往往面临的是不平衡的类别分布。目前存在的数据层面和模型层面算法试图从不同角度解决该问题,但面临着参数选择以及重复采样产生的额外计算等问题。针对此问题,提出了一种在小批量内样本损失自适应均衡化的方法。该算法采用了一种动态学习损失函数的方式,根据小批量内样本标签信息调整各样本损失权重,从而实现在小批量内各类别样本总损失的平衡性。通过在caltech101和ILSVRC2014数据集上的实验表明,该算法能够有效地减少计算成本并提高分类精度,且一定程度上避免了过采样方法所带来的模型过拟合风险。
Abstract:
The traditional classification algorithms generally require a balanced distribution of various categories in datasets. However, the traditional classification algorithms often encounter an imbalanced class distribution in real life. The existing data- and classifier-level methods that attempt to solve this problem based on different perspectives exhibit some disadvantages, including the selection of parameters that have to be handled carefully and additional computing power because of repeated sampling. To solve these disadvantages, a method that can adaptively maintain the loss balance of examples in a mini-batch is proposed. This algorithm uses a dynamic loss-learnt function to adjust the loss ratio of each sample based on the information present in the label in every mini-batch, thereby achieving a balanced total loss for each class. The experiments conducted using the caltech101 and ILSVRC2014 datasets denote that this algorithm can effectively reduce the computational cost, improve the classification accuracy, and avoid the overfitting risk of the model that can be attributed to the oversampling method.

参考文献/References:

[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[2] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77:354-377.
[3] JEATRAKUL P, WONG K W, FUNG C C. Using misclassification analysis for data cleaning[C]//Proceedings of International Workshop on Advanced Computational Intelligence and Intelligent Informatics. Tokyo, Japan, 2009:297?302.
[4] BATISTA G E A P A, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD explorations newsletter, 2004, 6(1):20-29.
[5] XIAO Jianxiong, HAYS J, EHINGER K A, et al. SUN database:Large-scale scene recognition from abbey to zoo[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:3485?3492.
[6] GRZYMALA-BUSSE J W, GOODWIN L K, GRZYMALA-BUSSE W J, et al. An approach to imbalanced data sets based on changing rule strength[M]//PAL S K, POLKOWSKI L, SKOWRON A. Rough-Neural Computing. Berlin, Heidelberg:Springer, 2004:543?553.
[7] JAPKOWICZ N, STEPHEN S. The class imbalance problem:A systematic study[J]. Intelligent data analysis, 2002, 6(5):429-449.
[8] MORENO-TORRES J G, HERRERA F. A preliminary study on overlapping and data fracture in imbalanced domains by means of Genetic Programming-based feature extraction[C]//Proceedings of the 201010th International Conference on Intelligent Systems Design and Applications. Cairo, Egypt, 2014:501?506.
[9] WANG K J, MAKOND B, CHEN Kunhuang, et al. A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients[J]. Applied soft computing, 2014, 20:15-24.
[10] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16(1):321-357.
[11] KOPLOWITZ J, BROWN T A. On the relation of performance to editing in nearest neighbor rules[J]. Pattern recognition, 1981, 13(3):251-255.
[12] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135:32-41.
[13] ELKAN C. The foundations of cost-sensitive learning[C]//Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence. San Francisco, USA, 2001:973?978.
[14] ZHOU Zhihua, LIU Xuying. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE transactions on knowledge and data engineering, 2006, 18(1):63-77.
[15] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 1:2999-3007.
[16] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, massachusetts:MIT press, 2016:218?227.
[17] LI Feifei, FERGUS R, PERONA P. Learning generative visual models from few training examples:an incremental Bayesian approach tested on 101 object categories[J]. Computer vision and image understanding, 2007, 106(1):59-70.
[18] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3):211-252.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA, 2016:770?778.
[20] ESPÍNDOLA R P, EBECKEN N F F. On extending F-measure and G-mean metrics to multi-class problems[M]//ZANASI A, BREBBIA C A, EBECKEN N F F. Data Mining VI Data Mining, Text Mining and Their Business Applications. Southampton:WIT Press, 2005, 25?34.

相似文献/References:

[1]胡小生,钟勇.基于加权聚类质心的SVM不平衡分类方法[J].智能系统学报,2013,8(03):261.
 HU Xiaosheng,ZHONG Yong.Support vector machine imbalanced data classification based on weighted clustering centroid[J].CAAI Transactions on Intelligent Systems,2013,8(05):261.

备注/Memo

备注/Memo:
收稿日期:2018-08-07。
作者简介:黄庆康,男,1994年生,硕士研究生,主要研究方向为图像分类、广告推荐;宋恺涛,男,1993年生,博士,主要研究方向为数据挖掘、推荐系统;陆建峰,男,1969年生,教授,主要研究方向为模式识别。参与过近20项省部级课题,获各类省部级科技进步奖9项。发表学术论文80余篇。
通讯作者:黄庆康.E-mail:kencon@foxmail.com
更新日期/Last Update: 1900-01-01