字符串 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 后的引号不完整。 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 附近有语法错误。 加权高效用因子的两阶段混合推荐算法-《智能系统学报》

[1]张旭,孙福振,方春.加权高效用因子的两阶段混合推荐算法[J].智能系统学报,2019,14(03):518-524.[doi:10.11992/tis.201710028]
 ZHANG Xu,SUN Fuzhen,FANG Chun.Two-phase weighted high-utility factor-based hybrid recommendation algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(03):518-524.[doi:10.11992/tis.201710028]
点击复制

加权高效用因子的两阶段混合推荐算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年03期
页码:
518-524
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Two-phase weighted high-utility factor-based hybrid recommendation algorithm
作者:
张旭 孙福振 方春
山东理工大学 计算机科学与技术学院, 山东 淄博 255049
Author(s):
ZHANG Xu SUN Fuzhen FANG Chun
College of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China
关键词:
两阶段高效用因子靶向因子主题模型用户兴趣混合推荐用户效用评分倾向
Keywords:
two phaseshigh-utility factortargeted factortopic modeluser interesthybrid recommendationuser utilityuser rating tendency
分类号:
TP311
DOI:
10.11992/tis.201710028
摘要:
传统协同过滤算法大多是围绕如何降低评分误差展开研究,未涉及用户评分过程。本文考虑到用户评分动机和用户本身评分倾向的情况,将用户评分过程分为用户评分和物品选择两个阶段,从预测用户兴趣概率和用户效用角度出发,采用潜在狄利克雷分布模型(LDA)挖掘出用户潜在高效用因子和物品被靶向概率因子,进而将两种因子加权融合作为第一阶段;第二阶段采用奇异值分解预测用户评分值并根据该评分值选择物品。综上,本文提出一种加权高效用因子的两阶段混合推荐算法(hybrid recommendation algorithm based on two-phase weighted high utility factor,Htp_Uf)。在MovieLens数据集上,实验结果表明,该算法在归一化累计折损增益(NDCG)和1-Call两种评价标准下优于其他4种推荐算法,能够有效提高推荐质量。
Abstract:
The traditional collaborative filtering algorithm focuses on methods for reducing the rating error, but it does not involve a user rating process. In this paper, we divide the user rating process into two phases, i.e., user rating and item selection, and take into account user-rating motivation and user-rating tendency. From the perspectives of predicting a user’s interest probability and user utility, we adopt a latent dirichlet allocation (LDA) to mine a user latent high-utility factor and an article-targeted probabilistic factor, and then weight and fuse these two factors in the first phase. In the second phase, we use singular value decomposition to predict a user rating value, which we then use in user recommendation lists. Our main contribution is our proposal of a two-phase weighted high-utility factor-based hybrid recommendation algorithm, which we abbreviate as Htp_Uf. We compare the effectiveness of the Htp_Uf algorithm with that of others using the MovieLens dataset. The results show that the performance of the proposed algorithm is superior to that of four other recommendation algorithms in terms of two evaluation criteria, namely, the normalized discounted cumulative gain and 1-call, which can effectively improve the quality of the recommendation.

参考文献/References:

[1] WEIMER M, KARATZOGLOU A, LE Q V, et al. COFIRANK maximum margin matrix factorization for collaborative ranking[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada:Curran Associates Inc., 2007:1593-1600.
[2] LIU N N, ZHAO Min, YANG Qiang. Probabilistic latent preference analysis for collaborative filtering[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China:ACM, 2009:759-766.
[3] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, Wisconsin:Morgan Kaufmann Publishers Inc., 1998:43-52.
[4] LI Sheng, KAWALE J, FU Yun. Deep collaborative filtering via marginalized denoising auto-encoder[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia:ACM, 2015:811-820.
[5] KA??áK O, KOMPAN M, BIELIKOVá M. Personalized hybrid recommendation for group of users:Top-N multimedia recommender[J]. Information processing and management, 2016, 52(3):459-477.
[6] LI Sheng, KAWALE J, FU Yun. Predicting user behavior in display advertising via dynamic collective matrix factorization[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information. Santiago, Chile:ACM, 2015:875-878.
[7] TARUS J K, NIU Zhendong, YOUSIF A. A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining[J]. Future generation computer systems, 2017, 72:37-48.
[8] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37.
[9] MA Hao, ZHOU Dengyong, LIU Chao, et al. Recommender systems with social regularization[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China:ACM, 2011:287-296.
[10] ANSARI A, LI Yang, ZHANG J Z. Probabilistic topic model for hybrid recommender systems:a stochastic variational Bayesian approach[D]. New York:Columbia Business School, 2017.
[11] 彭敏, 席俊杰, 代心媛, 等. 基于情感分析和LDA主题模型的协同过滤推荐算法[J]. 中文信息学报, 2017, 31(2):194-203 PENG Min, XI Junjie, DAI Xinyuan, et al. Collaborative filtering recommendation based on sentiment analysis and LDA topic model[J]. Journal of Chinese information processing, 2017, 31(2):194-203
[12] 黄璐, 林川杰, 何军, 等. 融合主题模型和协同过滤的多样化移动应用推荐[J]. 软件学报, 2017, 28(3):708-720 HUANG Lu, LIN Chuanjie, HE Jun, et al. Diversified mobile app recommendation combining topic model and collaborative filtering[J]. Journal of software, 2017, 28(3):708-720
[13] BLEI D M, NG A Y, JORDAN M I, et al. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(4/5):993-1022.
[14] GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the national academy of sciences of the United States of America, 2004, 101(S1):5228-5235.
[15] SHI Yue, KARATZOGLOU A, BALTRUNAS L, et al. CLiMF:learning to maximize reciprocal rank with collaborative less-is-more filtering[C]//Proceedings of the 6th ACM conference on recommender systems. Dublin, Ireland:ACM, 2012:139-146.
[16] J?RVELIN K, KEK?L?INEN K. Cumulated gain-based evaluation of IR techniques[J]. ACM transactions on information systems (TOIS), 2002, 20(4):422-446.
[17] LINDEN G, SMITH B, YORK J. Amazon. com recommendations:item-to-item collaborative filtering[J]. IEEE internet computing, 2003, 7(1):76-80.
[18] SYMEONIDIS P. Content-based dimensionality reduction for recommender systems[M]//PREISACH C, BURKHARDT H, SCHMIDT-THIEME L, et al. Data Analysis, Machine Learning and Applications. Berlin, Heidelberg:Springer, 2008:619-626.
[19] ZHAO Xiangyu, NIU Zhendong, CHEN Wei, et al. A hybrid approach of topic model and matrix factorization based on two-step recommendation framework[J]. Journal of intelligent information systems, 2015, 44(3):335-353.

备注/Memo

备注/Memo:
收稿日期:2017-10-31。
基金项目:国家自然科学基金项目(61602280);山东省自然科学基金项目(ZR2014FQ028).
作者简介:张旭,男,1991年生,硕士研究生,主要研究方向为智能信息处理、推荐系统;孙福振,男,1978年生,副教授,博士,主要研究方向为信息检索与数据挖掘、推荐系统、话题检测与热点跟踪。授权国家发明专利6项。发表学术论文30余篇;方春,女,1981年生,讲师,博士,主要研究方向为智能计算、模式识别、生物医学研究。发表学术论文10余篇。
通讯作者:孙福振.E-mail:sunfuzhen@sdut.edu.cn
更新日期/Last Update: 1900-01-01