[1]付兴建,于士贤.GBF-CMAC和滑模控制的柔性结构系统控制[J].智能系统学报,2018,13(05):791-798.[doi:10.11992/tis.201706066]
 FU Xingjian,YU Shixian.Flexible plant system control based on GBF-CMAC and sliding mode control[J].CAAI Transactions on Intelligent Systems,2018,13(05):791-798.[doi:10.11992/tis.201706066]
点击复制

GBF-CMAC和滑模控制的柔性结构系统控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年05期
页码:
791-798
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Flexible plant system control based on GBF-CMAC and sliding mode control
作者:
付兴建 于士贤
北京信息科技大学 自动化学院, 北京 100192
Author(s):
FU Xingjian YU Shixian
School of Automation, Beijing Information Science and Technology University, Beijing 100192, China
关键词:
高斯基函数小脑模型控制器神经网络自适应分层结构滑模控制不确定系统柔性直线系统
Keywords:
Gaussian basis functionCMACneural networkadaptivesliding mode controlhierarchical structureuncertain systemflexible linear system
分类号:
TP273
DOI:
10.11992/tis.201706066
摘要:
针对一类不确定系统的跟踪控制,设计了一种将GBF-CMAC(cerebellar model articulation controller with Gauss basis function)与滑模控制相结合的控制系统。利用符号距离和分层结构减少了神经网络所需存储器的数量,并提出了一种神经网络参数的自适应学习律。将设计的控制器用于含有不确定性和欠驱动结构的高阶柔性直线结构系统的跟踪控制,并与一般滑模控制和积分滑模控制进行了比较。实验结果表明,所设计的控制器不仅具有较好的鲁棒性,而且改善了滑模控制存在的抖振问题。同时通过调整神经网络的参数对抖振进行控制,实现了抖振和跟踪性能之间的最优选择。
Abstract:
In this paper, a tracking control method combining cerebellar model articulation controller with Gaussian basis function (GBF-CMAC) and sliding mode control (SMC) for uncertain systems is designed. An adaptive learning algorithm of GBF-CMAC is proposed, in which a signed distance and hierarchical structure are used to reduce the memory capacity needed by the neural network. The designed controller is applied for the tracking control of high-order flexible linear system with uncertainties and under-actuated structures, and it is compared with general SMC and integral sliding mode control (ISMC). The experimental results show that the designed controller has a better robustness and improves the chattering problem of SMC. Moreover, the chattering is controlled by adjusting the parameters of the neural network to achieve the optimal choice between chattering and tracking performance.

参考文献/References:

[1] 梁涛年, 陈建军. 分数阶参数不确定系统的PIλ控制器[J]. 控制理论与应用, 2011, 28(3):400-406 LIANG Taonian, CHEN Jianjun. Design of fractional order PIλ controller for fractional order systems with uncertain parameters[J]. Control theory & applications, 2011, 28(3):400-406
[2] 叶思隽, 王新民, 张清江, 等. 不确定系统混合H2/H鲁棒控制的直接迭代LMI方法[J]. 控制理论与应用, 2011, 28(2):247-255 YE Sijun, WANG Xinmin, ZHANG Qingjiang, et al. Direct iterative LMI-based approach of mixed H-two/H-infinity robust control for uncertain systems[J]. Control theory & applications, 2011, 28(2):247-255
[3] 齐丽强, 孙明轩, 管海娃. 非参数不确定系统的有限时间迭代学习控制[J]. 自动化学报, 2013, 40(7):1320-1327 QI LiQiang, SUN MingXuan, GUAN HaiWa. Finite-time iterative learning control for systems with nonparametric uncertainties[J]. Acta automatica sinica, 2013, 40(7):1320-1327
[4] 于靖, 陈谋, 姜长生. 基于干扰观测器的非线性不确定系统自适应滑模控制[J]. 控制理论与应用, 2014, 31(8):993-999 YU Jing, CHEN Mou, JIANG Changsheng, Adaptive sliding mode control for nonlinear uncertain systems based on disturbance observer[J]. Control theory & applications, 2014, 31(8):993-999
[5] 王琦, 陈龙胜. 非仿射纯反馈不确定系统预设性能鲁棒自适应控制[J]. 电机与控制学报, 2017, 21(2):109-116 WANG Qi, CHEN Longsheng. Prescribed performance adaptive robust control for a class of uncertain non-affine pure feedback system[J]. Electric machines and control, 2017, 21(2):109-116
[6] 王艳敏, 冯勇, 夏红伟, 等. 多输入不确定系统的平滑非奇异终端滑模控制[J]. 控制与决策, 2015, 30(1):161- 165 WANG Yanmin, FENG Yong, XIA Hongwei, et al. Smooth nonsingular terminal sliding mode control of uncertain multi-input systems[J]. Control and decision, 2015, 30(1):161-165
[7] 胡盛斌. 非线性多关节机械人系统滑模控制[M]. 北京:国防工业出版社, 2015.
[8] 姚灵灵, 贺乃宝, 高倩, 等. 四旋翼偏航系统的优化神经网络滑模控制[J]. 机械设计与制造, 2016(10):147-150 YAO Lingling, HE Naibao, GAO Qian, et al. Optimized neural network sliding mode control for the yaw system associated with quad-rotor[J]. Machinery design & manufacture, 2016(10):147-150
[9] 翟晨汐, 李洪兴. 板球系统的直接自适应模糊滑模控制[J]. 计算机仿真, 2016, 33(2):383-388, 432 ZHAI Chenxi, LI Hongxing. Direct adaptive fuzzy sliding-mode control for ball and plate system[J]. Computer simulation, 2016, 33(2):383-388, 432
[10] 楼晓春, 吴国庆. 主动磁轴承系统的自适应滑模控制[J]. 电工技术学报, 2012, 27(1):142-147 LOU Xiaochun, WU Guoqing. Adaptive sliding mode control for an active magnetic bearing system[J]. Transactions of China electrotechnical society, 2012, 27(1):142-147
[11] 张强, 于宏亮, 许德智, 等. 基于自组织小波小脑模型关节控制器的不确定非线性系统鲁棒自适应终端滑模控制[J]. 控制理论与应用, 2016, 33(3):387-397 ZHANG Qiang, YU Hongliang, XU Dezhi, et al. A robust adaptive integral terminal sliding mode control for uncertain nonlinear systems using self-organizing wavelet cerebella model articulation controller[J]. Control theory & applications, 2016, 33(3):387-397
[12] ALBUS J S. Data storage in the cerebellar model articulation controller (CMAC)[J]. Journal of dynamic systems, measurement, and control, 1975, 97(3):228-233.
[13] 鲍春雷, 王斌锐, 金英连, 等. 气动肌肉关节的无模型自适应CMAC迟滞补偿控制[J]. 机器人, 2015, 37(3):298-303, 309 BAO Chunlei, WANG Binrui, JIN Yinglian, et al. Model free adaptive CMAC hysteresis compensation control of the pneumatic muscle joint[J]. Robot, 2015, 37(3):298-303, 309
[14] LIN C M, LI H Y. Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems[J]. IEEE transactions on fuzzy systems, 2014, 22(4):791-802.
[15] ZHANG Ping, LIU Xin, DU Guanglong. Online robot auto-calibration using IMU with CMAC and EKF[C]//Proceedings of 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang China, 2015.
[16] CHIANG C T, LIN C S. CMAC with general basis functions[J]. Neural networks, 1996, 9(7):1199-1211.
[17] YEH M F. Single-input CMAC control system[J]. Neurocomputing, 2007, 70(16/17/18):2638-2644.
[18] RODRÍGUEZ F O, DE JESÚS RUBIO J, GASPAR C R M, et al. Hierarchical fuzzy CMAC control for nonlinear systems[J]. Neural computing and applications, 2013, 23(1):323-331.
[19] YU Wen, RODRIGUEZ F O, MORENO-ARMENDARIZ M A. Hierarchical fuzzy CMAC for nonlinear systems modeling[J]. IEEE transactions on fuzzy systems, 2008, 16(5):1302-1314.
[20] 段培永, 邵惠鹤. 基于广义基函数的CMAC学习算法的改进及收敛性分析[J]. 自动化学报, 1999, 25(2):258-263 DUAN Peiyong, SHAO Huihe. Improved algorithm of CMAC with general basis function and its convergence analysis[J]. Acta automatica sinica, 1999, 25(2):258-263
[21] NGO T Q, PHUONG T V. Robust adaptive self-organizing wavelet fuzzy CMAC tracking control for de-icing robot manipulator[J]. International journal of computers communications & control, 2015, 10(4):567-578.
[22] M210使用手册[M]. 美国:易希普公司, 2014.

备注/Memo

备注/Memo:
收稿日期:2017-06-19。
基金项目:国家自然科学基金项目(61573230).
作者简介:付兴建,男,1974年生,副教授,博士,主要研究方向为非线性系统鲁棒控制、智能控制、运动控制。发表学术论文30余篇,被EI检索20余篇;于士贤,男,1993年生,硕士研究生,主要研究方向为神经网络、鲁棒控制。
通讯作者:付兴建.E-mail:fuxingjian@sina.com.
更新日期/Last Update: 2018-10-25