[1]杨恢先,刘建,张孟娟,等.双差值局部方向模式的人脸识别[J].智能系统学报,2018,13(05):751-759.[doi:10.11992/tis.201706032]
 YANG Huixian,LIU Jian,ZHANG Mengjuan,et al.Face recognition with double difference local directional pattern[J].CAAI Transactions on Intelligent Systems,2018,13(05):751-759.[doi:10.11992/tis.201706032]
点击复制

双差值局部方向模式的人脸识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年05期
页码:
751-759
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Face recognition with double difference local directional pattern
作者:
杨恢先1 刘建1 张孟娟1 周彤彤2
1. 湘潭大学 物理与光电工程学院, 湖南 湘潭 411105;
2. 湖南应用技术学院 机电工程学院, 湖南 常德 415000
Author(s):
YANG Huixian1 LIU Jian1 ZHANG Mengjuan1 ZHOU Tongtong2
1. College of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2. Mechanical and Electrical Engineering College, Hu’nan Institute of Applied Technology, Changde 415000, China
关键词:
差值局部方向模式特征提取双差值局部方向模式人脸识别Kirsch算子人脸特征
Keywords:
difference local directional patternfeature extractiondouble difference local directional patternface recognitionKirsch operatorface features
分类号:
TP391.41
DOI:
10.11992/tis.201706032
摘要:
针对差值局部方向模式(DLDP)特征提取不够充分和对光照、噪声等比较敏感的问题,提出一种双差值局部方向模式(DDLDP)人脸识别方法。首先,分别将半径为1的3×3领域像素灰度值和半径为2的5×5领域像素灰度值与8个Kirsch模板算子卷积,得到两组对应8个灰度响应值。然后,将半径为1的灰度响应值,按照相邻前后作差的方式,得到8个灰度响应差值,再将半径为1和2得到的灰度响应值上下作差,也得到8个灰度响应差值。最后,将两组灰度响应差值取绝对值,其最大绝对值所对应下标位置构成DDLDP码。仿真实验结果表明,相比同类基于局部方向模式的单一人脸识别算法,该方法具有更好识别效果。DDLDP更加完整地提取了人脸特征,且表现出对光照和噪声更好的鲁棒性。
Abstract:
To solve the problem of insufficient feature extraction and sensitivity to the noise and illumination encountered using difference local directional pattern (DLDP) method, this article proposes a double difference local direction pattern (DDLDP) face feature extraction method. First, a 3×3 domain pixel gray value with a radius of 1 and a 5×5 domain pixel gray value with a radius of 2 were convolved with eight Kirsch template operators to obtain two groups of eight gray response values. Then, the gray-scale response value with a radius of 1 was obtained as a difference between the values of the neighboring pixels at both sides to obtain eight gray-scale response differences. Meanwhile, the edge response difference values of different radius were also calculated. Finally, the two sets of gray response differences were taken as absolute values, and their maximum absolute values correspond to the subscripts form DDLDP code. Simulation experiment results show that the proposed algorithm has better recognition effect than other single face recognition algorithms based on local directional pattern (LDP). The DDLDP algorithm can fully extract the facial features, and have better robustness to illumination and noise.

参考文献/References:

[1] LANG Liying, HONG Yue. The application of face recognition in network security[C]//Proceedings of 2008 International Conference on Computational Intelligence and Security. Suzhou, China, 2008:395-398.
[2] BOWYER K W. Face recognition technology:security versus privacy[J]. IEEE technology and society magazine, 2004, 23(1):9-19.
[3] VIDAL R, MA Yi, SASTRY S. Generalized principal component analysis (GPCA)[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(12):1945-1959.
[4] SKROBOT V L, CASTRO E V R, PEREIRA R C C, et al. Use of principal component analysis (PCA) and linear discriminant analysis (LDA) in gas chromatographic (GC) data in the investigation of gasoline adulteration[J]. Energy and fuels, 2007, 21(6):3394-3400.
[5] WAN Minghua, YANG Guowei, GAI Shan, et al. Two- dimensional discriminant locality preserving projections (2DDLPP) and its application to feature extraction via fuzzy set[J]. Multimedia tools and applications, 2017, 76(1):355-371.
[6] AHMAD F, ROY K, O’CONNOR B, et al. Fly wing biometrics using modified local binary pattern, SVMs and random forest[J]. International journal of machine learning and computing, 2014, 4(3):279-285.
[7] 童莹. 一种方向性的局部二值模式在人脸表情识别中的应用[J]. 智能系统学报, 2015, 10(3):422-428 TONG Ying. Local binary pattern based on the directions and its application in facial expression recognition[J]. CAAI transactions on intelligent systems, 2015, 10(3):422-428
[8] TAN Xiaoyang, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE transactions on image processing, 2010, 19(6):1635-1650.
[9] 张毅, 廖巧珍, 罗元. 融合二阶HOG与CS-LBP的头部姿态估计[J]. 智能系统学报, 2015, 10(5):741-746 ZHANG Yi, LIAO Qiaozhen, LUO Yuan. Head pose estimation fusing the second order HOG and CS-LBP[J]. CAAI transactions on intelligent systems, 2015, 10(5):741-746
[10] WANG Kai, BICHOT C E, LI Yan, et al. Local binary circumferential and radial derivative pattern for texture classification[J]. Pattern recognition, 2017, 67:213-229.
[11] GUO Zhenhua, LI Qin, YOU J, et al. Local directional derivative pattern for rotation invariant texture classification[J]. Neural computing and applications, 2012, 21(8):1893-1904.
[12] JABID T, KABIR M H, CHAE O. Local Directional Pattern (LDP) for face recognition[C]//Proceedings of 2010 Digest of Technical Papers International Conference on Consumer Electronics. Las Vegas, NV, USA, 2010:329-330.
[13] ZHONG Fujin, ZHANG Jiashu. Face recognition with enhanced local directional patterns[J]. Neurocomputing, 2013, 119:375-384.
[14] RAMIREZ RIVERA A, ROJAS CASTILLO J, CHAE O O. Local directional number pattern for face analysis:face and expression recognition[J]. IEEE transactions on image processing, 2013, 22(5):1740-1752.
[15] 杨恢先, 翟云龙, 蔡勇勇, 等. 基于中心对称梯度幅值相位模式的单样本人脸识别[J]. 光电子·激光, 2015, 26(5):969-977 YANG Huixian, ZHAI Yunlong, CAI Yongyong, et al. Face recognition based on center-symmetric gradient magnitude and phase pattern[J]. Journal of optoelectronics·laser, 2015, 26(5):969-977
[16] 朱明旱, 陈日新. 局部方向数字模式算子的改进[J]. 光电子·激光, 2015, 26(6):1179-1185 ZHU Minghan, CHEN Rixin. Improvement of the local directional number pattern operator[J]. Journal of optoelectronics·laser, 2015, 26(6):1179-1185
[17] 吴迪, 唐勇奇, 林国汉, 等. 基于显著性局部定向模式和深度学习的鲁棒人脸识别[J]. 光电子·激光, 2016, 27(6):665-661 WU Di, TANG Yongqi, LIN Guohan, et al. Roboust face recognition based on significance local directional pattern and deep learning[J]. Journal of optoelectronics·lasers, 2016, 27(6):665-661
[18] 吴迪, 胡慧, 李亚. 基于显著性差值局部定向模式和深度卷积网络的鲁棒人脸识别[J]. 光电子·激光, 2017, 28(8):902-909 WU Di, HU Hui, LI Ya. Roboust face recognition based on significance difference local directional pattern and deep convolution neural network[J]. Journal of optoelectronics·laser, 2017, 28(8):902-909
[19] RAMÍREZ RIVERA A, ROJAS CASTILLO J, CHAE O. Local directional texture pattern image descriptor[J]. Pattern recognition letters, 2015, 51:94-100.
[20] 李照奎, 丁立新, 王岩, 等. 基于差值局部方向模式的人脸特征表示[J]. 软件学报, 2015, 26(11):2912-2929 LI Zhaokui, DING Lixin, WANG Yan, et al. Face feature representation based on difference local directional pattern[J]. Journal of software, 2015, 26(11):2912-2929
[21] EL KHADIRI I, CHAHI A, EL MERABET Y, et al. Local directional ternary pattern:a new texture descriptor for texture classification[J]. Computer vision and image understanding, 2018, 169:14-27.
[22] 王晓华, 李瑞静, 胡敏, 等. 融合局部特征的面部遮挡表情识别[J]. 中国图象图形学报, 2016, 21(11):1473- 1482 WANG Xiaohua, LI Ruijing, HU Min, et al. Occluded facial expression recognition based on the fusion of local features[J]. Journal of image and graphics, 2016, 21(11):1473-1482
[23] DHURANDHAR A, DOBRA A. Probabilistic characterization of nearest neighbor classifier[J]. International journal of machine learning and cybernetics, 2013, 4(4):259-272.

相似文献/References:

[1]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(01):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(05):69.
[2]谭 营,朱元春.反垃圾电子邮件方法研究进展[J].智能系统学报,2010,5(03):189.
 TAN Ying,ZHU Yuan-chun.Advances in antispam techniques[J].CAAI Transactions on Intelligent Systems,2010,5(05):189.
[3]王斐,张育中,宁廷会,等.脑-机接口研究进展[J].智能系统学报,2011,6(03):189.
 WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6(05):189.
[4]刘琚,孙建德.独立分量分析的图像/视频分析与应用[J].智能系统学报,2011,6(06):495.
 LIU Ju,SUN Jiande.Independent component analysisbased image/video analysis and applications[J].CAAI Transactions on Intelligent Systems,2011,6(05):495.
[5]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(06):471.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6(05):471.
[6]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(01):75.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7(05):75.
[7]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(04):339.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(05):339.
[8]刘忠宝,王士同.从Parzen窗核密度估计到特征提取方法:新的研究视角[J].智能系统学报,2012,7(06):471.
 LIU Zhongbao,WANG Shitong.From Parzen window estimation to feature extraction: a new perspective[J].CAAI Transactions on Intelligent Systems,2012,7(05):471.
[9]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(03):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8(05):189.
[10]许可乐,唐涛,蒋咏梅.一种SAR图像稳健特征点提取方法[J].智能系统学报,2013,8(04):287.[doi:10.3969/j.issn.1673-4785.201304038]
 XU Kele,TANG Tao,JIANG Yongmei.A stable feature point extraction approach for SAR image registration[J].CAAI Transactions on Intelligent Systems,2013,8(05):287.[doi:10.3969/j.issn.1673-4785.201304038]

备注/Memo

备注/Memo:
收稿日期:2017-06-09。
基金项目:湖南省教育厅科学研究项目(15C1009).
作者简介:杨恢先,男,1963年生,教授,主要研究方向为图形图像处理和嵌入式系统。曾获湖南省教育厅科学进步奖三等奖,湖南省教育厅教学成果奖二项。获得国家发明专利5项。发表学术论文80余篇,出版教材2部;刘建,男,1992年生,硕士研究生,主要研究方向为人脸识别、目标检测和语义分割;张孟娟,女,1989年生,硕士研究生,主要研究方向为数字图像处理、模式识别。
通讯作者:刘建.E-mail:963645618@qq.com.
更新日期/Last Update: 2018-10-25