[1]雷森,史振威,石天阳,等.基于递归神经网络的风暴潮增水预测[J].智能系统学报,2017,12(5):640-644.[doi:10.11992/tis.201706015]
 LEI Sen,SHI Zhenwei,SHI Tianyang,et al.Prediction of storm surge based on recurrent neural network[J].CAAI Transactions on Intelligent Systems,2017,12(5):640-644.[doi:10.11992/tis.201706015]
点击复制

基于递归神经网络的风暴潮增水预测

参考文献/References:
[1] 王喜年. 风暴潮预报知识讲座[J]. 海洋预报, 2001, 18(1):73-78.
[2] 高清清,曹兵,高鑫鑫,等. 南通沿海台风风暴潮分析及其经验预报初探[J]. 海洋预报, 2014, 31(1):29-35.GAO Qingqing, CAO Bing, GAO Xinxin, et al. Analysis of the typhoon storm surge in the Nantong coastal zone and the forecasting formulas[J]. Marine forecasts, 2014, 31(1):29-35.
[3] 曾德美. 青岛港风暴潮经验统计预报[J]. 海洋预报, 1992, 9(3):66-73.ZENG Demei. A statistical forecasting of storm surge in qingdao harbor[J]. Marine forecasts, 1992, 9(3):66-73.
[4] 谢亚力, 黄世昌. 钱塘江河口风暴潮经验预报[J]. 海洋预报, 2006, 23(1):54-58.XIE Yali, HUANG Shichang. Effects on watercourse and hydrological factor in downstrean nanxi river due to water diversion[J]. Marine forecasts, 2006, 23(1):54-58.
[5] 朱建荣, 朱首贤. ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用[J]. 海洋与湖沼, 2003, 34(4):364-373.ZHU Jianrong, ZHU Shouxian. Improvement of the ECOM with application to the changjiang river estuary, Hangzhou bay and adjacent waters[J]. Oceanologia Et limnologia sinica, 2003, 34(4):364-373.
[6] 黄世昌, 李玉成, 赵鑫, 等. 浙江沿海超强台风作用下风暴潮增水数值分析[J]. 海洋工程,2008, 26(3):58-64. HUANG Shichang, LI Yucheng, ZHAO Xin, et al. Numerical analysis of storm surge due to a super typhoon in coastal region of Zhejiang province[J]. The ocean engineering, 2008, 26(3):58-64.
[7] 王培涛,于福江,刘秋兴,等. 福建沿海精细化台风风暴潮集合数值预报技术研究及应用[J]. 海洋预报,2010, 27(5):7-15.
[8] LEE T L. Neural network prediction of a storm surge[J]. Ocean engineering, 2006, 33(3):483-494.
[9] RAJASEKARAN S, GAYATHRI S, LEE T L, et al. Support vector regression methodology for storm surge predictions[J]. Ocean engineering, 2008, 35(16):1578-1587.
[10] WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural computation, 1989, 1(2):270-280.
[11] ELMAN J L. Finding structure in time[J]. Cognitive science, 1990, 14(2):179-211.
[12] BOTVINICK M M, PLAUT D C. Short-term memory for serial order:a recurrent neural network model[J]. Psychological review, 2006, 113(2):201-233.
[13] SAINATH T N, KINGSBURY B, SAON G, et al. Deep convolutional neural networks for large-scale speech tasks[J]. Neural networks, 2015, 64:39-48.
[14] SARIKAYA R, HINTON G E, DEORAS A, et al. Application of deep belief networks for natural language understanding[J]. IEEE transactions on audio, speech, and language processing, 2014, 22(4):778-784.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Nevada, America, 2012:1097-1105.
[16] SVOZIL D, KVASNICKA V, POSPICHAL J, et al. Introduction to multi-layer feed-forward neural networks[J]. Chemometrics and intelligent laboratory systems, 1997, 39(1):43-62.
[17] HORNIK K, STINCHCOMBE M B, WHITE H, et al. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5):359-366.
[18] RUMELHART D E, HINTON G E, WILLIAMS R J, et al. Learning representations by back-propagating errors[J]. Nature, 1988, 323(6088):533-536.
[19] KOSMATOPOULOS E B, POLYCARPOU M M, CHRISTODOULOU M A, et al. High-order neural network structures for identification of dynamical systems[J]. IEEE transactions on neural networks, 1995, 6(2):422-431.
[20] WERBOS P J. Backpropagation through time:what it does and how to do it[J]. Proceedings of the IEEE, 1990, 78(10):1550-1560.
相似文献/References:
[1]周杉杉,李文静,乔俊飞.基于自组织递归模糊神经网络的PM2.5浓度预测[J].智能系统学报,2018,13(4):509.[doi:10.11992/tis.201710007]
 ZHOU Shanshan,LI Wenjing,QIAO Junfei.Prediction of PM2.5 concentration based on self-organizing recurrent fuzzy neural network[J].CAAI Transactions on Intelligent Systems,2018,13(5):509.[doi:10.11992/tis.201710007]
[2]程康明,熊伟丽.一种自训练框架下的三优选半监督回归算法[J].智能系统学报,2020,15(3):568.[doi:10.11992/tis.201905033]
 CHENG Kangming,XIONG Weili.Three-optimal semi-supervised regression algorithm under self-training framework[J].CAAI Transactions on Intelligent Systems,2020,15(5):568.[doi:10.11992/tis.201905033]
[3]曾毓菁,姜勇.一种融入注意力和预测的特征选择SLAM算法[J].智能系统学报,2021,16(6):1039.[doi:10.11992/tis.202010036]
 ZENG Yujing,JIANG Yong.Feature selection simultaneous localization and mapping algorithm incorporating attention and anticipation[J].CAAI Transactions on Intelligent Systems,2021,16(5):1039.[doi:10.11992/tis.202010036]

备注/Memo

收稿日期:2017-06-07。
基金项目:国家自然科学基金项目(61671037).
作者简介:雷森,男,1992年生,博士研究生,主要研究方向为图像处理、机器学习、遥感影像质量提升;史振威,男,1977年生,教授,博士生导师,博士,主要研究方向为图像处理、模式识别、机器学习、遥感影像处理。发表SCI国际期刊检索论文70余篇;石天阳,男,1994年生,硕士研究生,主要研究方向为机器学习和人工智能。
通讯作者:史振威.E-mail:shizhenwei@buaa.edu.cn

更新日期/Last Update: 2017-10-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134