[1]邓云生,杨洪勇.基于囚徒困境策略的改进HK网络上的合作博弈[J].智能系统学报,2018,13(03):479-485.[doi:10.11992/tis.201612018]
 DENG Yunsheng,YANG Hongyong.Improved cooperative behavior in HK networks based on the prisoner dilemma game[J].CAAI Transactions on Intelligent Systems,2018,13(03):479-485.[doi:10.11992/tis.201612018]
点击复制

基于囚徒困境策略的改进HK网络上的合作博弈(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年03期
页码:
479-485
栏目:
出版日期:
2018-05-05

文章信息/Info

Title:
Improved cooperative behavior in HK networks based on the prisoner dilemma game
作者:
邓云生 杨洪勇
鲁东大学 信息与电气工程学院, 山东 烟台 264025
Author(s):
DENG Yunsheng YANG Hongyong
School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
关键词:
HK网络高聚类系数幂律可调囚徒博弈合作行为网络博弈背叛的诱惑收益矩阵
Keywords:
HK networkhigh clustering coefficientadjustable power lawprisoner dilemma gamecooperative behaviornetwork gametemptation to betrayalpayoff matrix
分类号:
TP273
DOI:
10.11992/tis.201612018
摘要:
为模拟现实世界的合作行为,本文在HK网络模型基础上提出了一种具有高聚类幂律可调性质的新的网络模型,并分析了囚徒困境博弈在此网络上的演化。通过仿真实验,研究了该网络的高聚类特性对合作行为的影响。大量实验表明,网络的高聚类特性可以极大促进合作现象的涌现。同时研究也发现,随着诱惑参数的变大,合作水平也会随之下降,但幅度不大。总之,该演化博弈模型可以促进合作现象的涌现并抵御背叛策略的传播。
Abstract:
To simulate the cooperative behavior using the HK network model, we proposed a new adjustable power-law high-clustering network model to analyze the prisoner dilemma game. Through simulations, we investigated the effect of high clustering on the cooperative behavior. The experimental findings suggested that high clustering coefficient values may considerably contribute toward the emergence of cooperative behavior. We also found that with increasing temptation, the level of cooperation decreased and the variation was small. Altogether, the evolutionary game model promotes cooperation and hinders betrayal.

参考文献/References:

[1] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[2] BARABÁSI A L, ALBERT R, JEONG H. Mean-field theory for scale-free random networks[J]. Physica A:statistical mechanics and its applications, 1999, 272(1/2):173-187.
[3] HOLME P, KIM B J. Growing scale-free networks with tunable clustering[J]. Physical review E, 2001, 65(2 Pt 2):026107.
[4] 李稳国, 王力虎, 陈明芳. HK网络演化模型的研究和改进[J]. 计算机工程, 2009, 35(3):121-122, 125. LI Wenguo, WANG Lihu, CHEN Mingfang. Study and improvement on growing HK network model[J]. Computer engineering, 2009, 35(3):121-122, 125.
[5] 王丹, 井元伟, 郝彬彬. 扩展HK网络结构与同步能力的研究[J]. 物理学报, 2012, 61(22):220511. WANG Dan, JING Yuanwei, HAO Binbin. Extended Holme-Kim network model and synchronizability[J]. Acta physica sinica, 2012, 61(22):220511.
[6] 崔爱香, 傅彦. 加速增长的HK网络演化模型[J]. 计算机科学, 2015, 42(4):37-39. CUI Aixiang, FU Yan. Accelerated-growth HK network evolution model[J]. Computer science, 2015, 42(4):37-39.
[7] 徐玉珠, 张达敏, 曾成, 等. 改进HK网络演化模型的研究[J]. 电子科技, 2016, 29(3):106-109. XU Yuzhu, ZHANG Damin, ZENG Cheng, et al. Research on and modeling of the improved HK network model[J]. Electronic science and technology, 2016, 29(3):106-109.
[8] CHEN Liuqing, GAO Jinchun, XIE Gang, et al. Routing to enhance traffic capacity for scale-free networks with tunable clustering[C]//Proceedings of IEEE Advanced Information Technology, Electronic and Automation Control Conference. Chongqing, China, 2015:110-113.
[9] VARGA I, KOCSIS G. Novel model of social networks with tunable clustering coefficient[C]//Proceedings of the 9th International Conference on Applied Informatics. Eger, Hungary, 2014:171-176.
[10] ZHANG Xuejun, GU Bo, GUAN Xiangmin, et al. Cascading failure in scale-free networks with tunable clustering[J]. International journal of modern physics C, 2016, 27(8):1650093.
[11] LI Ruiqi, SUN Shiwen, MA Yilin, et al. Effect of clustering on attack vulnerability of interdependent scale-free networks[J]. Chaos, solitons & fractals, 2015, 80:109-116.
[12] 朱张祥, 刘咏梅. 在线社交网络谣言传播的仿真研究——基于聚类系数可变的无标度网络环境[J]. 复杂系统与复杂性科学, 2016, 13(2):74-82. ZHU Zhangxiang, LIU Yongmei. Study of propagation of rumor in online social network based on scale-free network with tunable clustering[J]. Complex systems and complexity science, 2016, 13(2):74-82.
[13] 宋玉萍, 倪静. 网络集聚性对节点中心性指标准确性的影响[J]. 物理学报, 2016, 65(2):028901. SONG Yuping, NI Jing. Effect of variable network clustering on the accuracy of node centrality[J]. Acta physica sinica, 2016, 65(2):028901.
[14] NOWAK M A, MAY R M. Evolutionary games and spatial chaos[J]. Nature, 1992, 359(6398):826-829.
[15] ASSENZA S, GÓMEZ-GARDEÑES J, LATORA V. Enhancement of cooperation in highly clustered scale-free networks[J]. Physical review E, 2008, 78(1 Pt 2):017101.
[16] 张文明. 网络演化博弈模型和仿真研究[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG Wenming. Model and simulation research on netwokded evolutionary games[D]. Harbin:Harbin Institute of Technology, 2014.
[17] LI Pingping, KE Jianhong, LIN Zhenquan, et al. Cooperative behavior in evolutionary snowdrift games with the unconditional imitation rule on regular lattices[J]. Physical review E, 2012, 85(2 Pt 1):021111.
[18] ZHANG Wen, XU Chen, HUI P M. Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game[J]. European physical journal B, 2013, 86(5):196.
[19] LUO Chao, ZHANG Xiaolin, LIU Hong, et al. Cooperation in memory-based prisoner’s dilemma game on interdependent networks[J]. Physica A:statistical mechanics and its applications, 2016, 450:560-569.
[20] MENG Xiaokun, SUN Shiwen, LI Xiaoxuan, et al. Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks[J]. Physica A:statistical mechanics and its applications, 2016, 442:388-396.
[21] 向海涛, 梁世东. 双复杂网络间的演化博弈[J]. 物理学报, 2015, 64(1):018902. XIANG Haitao, LIANG Shidong. Evolutionary gambling dynamics for two growing complex networks[J]. Acta physica sinica, 2015, 64(1):018902.

备注/Memo

备注/Memo:
收稿日期:2016-12-14。
基金项目:国家自然科学基金项目(61673200).
作者简介:邓云生,男,1982年生,硕士研究生,主要研究方向为复杂网络、博弈论;杨洪勇,男,1967年生,教授,主要研究方向为多智能体编队控制、复杂网络、非线性系统控制。
通讯作者:杨洪勇.E-mail:hyyang@yeah.net.
更新日期/Last Update: 2018-06-25