[1]吴 青,刘三阳,郑 巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(02):74-77.
 WU Qing,LIU San-yang,ZHENG Wei.Support vector machines based on multiplicative updates[J].CAAI Transactions on Intelligent Systems,2007,2(02):74-77.
点击复制

基于乘性规则的支持向量机(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年02期
页码:
74-77
栏目:
出版日期:
2007-04-25

文章信息/Info

Title:
Support vector machines based on multiplicative updates
文章编号:
1673-4785(2007)02-0074-04
作者:
吴 青刘三阳郑 巍
西安电子科技大学理学院 陕西 西安 710071
Author(s):
WU Qing LIU San-yang ZHENG Wei
School of Science, Xidian University, Xi’a n 710071, China
关键词:
支持向量机二次凸规划混合约束乘性规则 
Keywords:
support vector machine quadratic convex programming mixed constraint multiplicative update
分类号:
TP18
文献标志码:
A
摘要:
传统的二次规划由于涉及大量的矩阵运算,运算速度慢成为支持向量机的最大缺点. 已有的乘性规则仅适于非负二次凸规划问题,推导出了求解支持向量机中混合约束二次凸规划的乘性规则,利用这一乘性规则极大地提高了优化速度.该方法提供了一种直接优化的方法,其所有变量可以并行迭代,乘性规则可以使得二次规划的目标函数单调下降到它的全局最小点.仿真试验结果表明了该算法有效性.
Abstract:
Due to intensive matrix computation, the speed of the quadratic equati on remains slow. The multiplicative updates available are only suited for nonneg ative quadratic convex programming. In this article, the multiplicative updates are derived for mixed constraint optimizations, dramatically speeding up optimiz ation rate. This method provides an extremely straightforward way to implement s upport vector machines(SVMs) where all the variables can be iterated in parallel. The multiplicative updates converge to global minimum point by monoton ically reducing the target function of quadratic programming. Experimental resul ts have confirmed the effectiveness of our approach.

参考文献/References:

[1]VAPNIK V. Nature of Statistical Learning Theory [M].New York: S pringer Verlag,2000
[2]BURGES C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
【3]SHA F, SAUL L K,LEE D D. Multiplicative updates for nonnegative qu ad ratic programming in support vector machines [A]. Advances in Neural and Infor mation Processing Systems[C].Cambridge, MA,2003.
[4]陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器 [J].计算机学报, 2004, 27(5): 690-694.
 LU Congde,ZHANG Taiyi,HU Jinyan. Support vector domain classifier based on mu ltiplicative updates [J]. Chinese Journal of Computers, 2004, 27(5): 691-694.
[5]SHA F,SAUL L K,LEE D. Multiplicative updates for large margin classi fiers[A]. Lecture notes in computer science[C].Washington,2003.
[6]PLATT J C. Sequential minimal optimization: a fast algorithm for tr aining support vector machines [Z]. In Scholkopf B, Burges C, Smola A, edito rs, Advances in Kernel Methods: Support Vector Machines. Cambridge, MA: MIT Pres s, 1998.
[7]CRISTIANINI N, CAMPBELL C, SHAWETAYLOR J. Multiplicative updatings for support vector machines[A]. In proceedings of ESANN[C].Brussels, 1999 .
[8]SHA F, SAUL L K, LEE D D. Multiplicative updates for nonnegative qu adratic programming in support vector machines[A]. In S.Becker, S.Thrun, and K . Obermayer, editors, Advances in Neural and Information Processing Systems[C] . Cambridge, MA,2003.

相似文献/References:

[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(06):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(02):467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(02):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4(02):157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(01):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(02):69.
[4]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(02):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2(02):83.
[5]赵春晖,陈万海,万 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(01):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(02):77.
[6]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(04):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3(02):361.
[7]刘 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(03):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4(02):199.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(02):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5(02):144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(04):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5(02):327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(03):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6(02):261.

备注/Memo

备注/Memo:
收稿日期:2006-09-30.
基金项目:国家自然科学基金资助项目(60574075)
作者简介:
吴 青,女,1975年生,博士研究生,主要研究方向为模式识别、支持向量机、最优化理论及其应用.E-mail: qwu@mail.xidian.edu.cn.
刘三阳,男,1959年生,博士生导师,主要研究方向为最优化理论方法、数据挖掘、支持向量机.承担并完成多个国家自然科学基金项目以及教育部跨世纪优秀人才基金项目. 在国内外重要期刊上发表论文200多篇,被SCI、EI检索70余篇.E-mail: liusanyang@126.c om.
郑 巍,男,1982年生,博士研究生,主要研究方向为人工智能、数据挖掘. E-mail: open2123@126.com
更新日期/Last Update: 2009-05-06