[1]李想,张婷,刘兆英,等.基于显著性导引孪生网络的红外船目标跟踪[J].智能系统学报,2024,19(6):1428-1437.[doi:10.11992/tis.202306004]
LI Xiang,ZHANG Ting,LIU Zhaoying,et al.Infrared ship target tracking based on saliency guided siamese network[J].CAAI Transactions on Intelligent Systems,2024,19(6):1428-1437.[doi:10.11992/tis.202306004]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1428-1437
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-12-05
- Title:
-
Infrared ship target tracking based on saliency guided siamese network
- 作者:
-
李想1, 张婷1, 刘兆英1, 刘波1, 李玉鑑2
-
1. 北京工业大学 信息学部, 北京 100124;
2. 桂林电子科技大学 人工智能学院, 广西 桂林 541004
- Author(s):
-
LI Xiang1, ZHANG Ting1, LIU Zhaoying1, LIU Bo1, LI Yujian2
-
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2. School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China
-
- 关键词:
-
红外船跟踪; 孪生网络; 显著性目标检测; 特征融合; 共享互相关; 多任务学习; 卷积神经网络; 深度学习
- Keywords:
-
infrared ship tracking; siamese network; salient object detection; feature fusion; shared correlation; multi-task learning; convolutional neural network; deep learning
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202306004
- 摘要:
-
由于红外图像特征判别力低,现有方法很难从背景中分割目标。而受到红外成像机制的影响,红外目标通常具有较高的局部显著性,因此本文提出一种基于显著性导引孪生网络的跟踪方法,以目标的显著性信息为先验知识,引导跟踪模型准确地定位目标。本文提出显著性预测网络和显著性增强网络。显著性预测网络用于获得搜索区域的全局显著性图,并将其输入到显著性增强网络以增强目标,提高模型的判别能力;设计了一个共享互相关结构来计算模板图像特征与显著性增强后的搜索区域特征之间的相似度,通过分类和回归两个任务共享互相关特征图,同时提升模型的效率和性能;由于目前缺少公开的红外船跟踪数据集,本文构建了一个新的红外船目标跟踪数据集(infrared ship dataset, ISD),共包括16种不同类型的船,7800幅带有标签的视频帧。在ISD上的实验结果显示,与其他18个常用跟踪模型相比,本模型达到了最高的准确率和最高的期望平均交并比。
- Abstract:
-
Infrared images often have features with low discriminative power, making it difficult to segment targets from the background using existing methods. Owing to the nature of infrared imaging, targets usually exhibit high local saliency. To address this, we propose a method for tracking infrared ship targets using saliency-guided Siamese networks (SGSiam). This approach uses the target’s saliency as prior knowledge to guide the tracking model for precise target localization. First, this study presents a saliency prediction network and a saliency enhancement network. The saliency prediction network generates a global saliency map of the search area, which is input into the saliency enhancement network to strengthen the target and improve the discriminative ability of the model. Second, a shared cross-correlation architecture is designed to calculate the similarity between the template image features and the saliency-enhanced search region features, thus improving the model efficiency and performance through shared feature maps for classification and regression tasks. Finally, owing to the lack of publicly available infrared ship tracking data sets, we introduce a new infrared ship data set (ISD), which includes 16 different ship types and 7800 video frames with manual annotations. Experimental results on ISD show that our model outperforms 18 commonly used tracking models, achieving the highest accuracy and the highest expected average overlap score.
备注/Memo
收稿日期:2023-6-1。
基金项目:国家自然科学基金区域创新发展联合基金项目(U23A20357);北京市教育委员会科技计划一般项目(KM202110005028);北京工业大学交叉科学研究院资助项目(2021020101);北京工业大学国际科研合作种子基金项目(2021A01).
作者简介:李想,硕士,主要研究方向为模式识别、深度学习和计算机视觉。E-mail:lixiang0123@emails.bjut.edu.cn;张婷,副教授,博士,主要研究方向为模式识别、深度学习和自然语言处理。E-mail:zhangting@bjut.edu.cn;刘兆英,副教授,博士,主要研究方向为图像处理、模式识别和深度学习。发表学术论文30余篇。E-mail:zhaoying.liu@bjut.edu.cn。
通讯作者:刘兆英. E-mail:zhaoying.liu@bjut.edu.cn
更新日期/Last Update:
2024-11-05