[1]王凯诚,鲁华祥,龚国良,等.基于注意力机制的显著性目标检测方法[J].智能系统学报,2020,15(5):956-963.[doi:10.11992/tis.201903001]
 WANG Kaicheng,LU Huaxiang,GONG Guoliang,et al.Salient object detection method based on the attention mechanism[J].CAAI Transactions on Intelligent Systems,2020,15(5):956-963.[doi:10.11992/tis.201903001]
点击复制

基于注意力机制的显著性目标检测方法

参考文献/References:
[1] ZHANG Fan, DU Bo, ZHANG Liangpei. Salien-cy-guided unsupervised feature learning for scene classi-fication[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(4): 2175-2184.
[2] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE transactions on pattern analysis and machine intelligence, 1998, 20(11): 1254-1259.
[3] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France, 2015: 597-606.
[4] TREISMAN A M, GELADE G. A feature-integration theory of attention[J]. Cognitive psychology, 1980, 12(1): 97-136.
[5] KOCH C, ULLMAN S. Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human neurobiology, 1985, 4(4): 219-227.
[6] WOLFE J M, CAVE K R, FRANZEL S L. Guided search: an alternative to the feature integration model for visual search[J]. Journal of experimental psychology: human perception and performance, 1989, 15(3): 419-433.
[7] LIU Tie, SUN Jian, ZHENG Nanning, et al. Learning to detect a salient object[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-8.
[8] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradi-ent-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[9] LONG J, SHELHAMER E, DARRELL T. Fully convo-lutional networks for semantic segmenta-tion[C]//Proceedings of 2015 IEEE Conference on Com-puter Vision and Pattern Recognition. Boston, USA, 2015: 3431-3440.
[10] HE Shengfeng, LAU R W, LIU Wenxi, et al. Supercnn: a superpixelwise convolutional neural network for salient object detection[J]. International journal of computer vision, 2015, 115(3): 330-344.
[11] WANG Lijun, LU Huchuan, RUAN Xiang, et al. Deep networks for saliency detection via local estimation and global search[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 3183-3192.
[12] WANG Xiang, MA Huimin, CHEN Xiaozhi. Salient object detection via fast R-CNN and low-level cues[C]//Proceedings of 2016 IEEE International Con-ference on Image Processing (ICIP). Phoenix, USA, 2016: 1042-1046.
[13] WANG Linzhao, WANG Lijun, LU Huchuan, et al. Sa-liency detection with recurrent fully convolutional net-works[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands, 2016: 825-841.
[14] LIU Nian, HAN Junwei. Dhsnet: deep hierarchical sali-ency network for salient object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 678-686.
[15] WANG Tiantian, BORJI A, ZHANG Lihe, et al. A stagewise refinement model for detecting salient objects in images[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 4039-4048.
[16] LAROCHELLE H, HINTON G. Learning to combine foveal glimpses with a third-order Boltzmann ma-chine[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. Vancouver, Canada, 2010: 1243-1251.
[17] FU Jianlong, ZHENG Heliang, MEI Tao. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA, 2017: 4476-4484.
[18] CHEN Long, ZHANG Hanwang, XIAO Jun, et al. SCA-CNN: spatial and channel-wise attention in convo-lutional networks for image captioning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA, 2017: 6298-6306.
[19] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132-7141.
[20] WANG Xiaolong, GIRSHICK R B, GUPTA A, et al. Non-local neural networks[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7794-7803.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[22] CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3): 569-582.
[23] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Sali-ency detection via graph-based manifold rank-ing[C]//Proceedings of 2013 IEEE Conference on Com-puter Vision and Pattern Recognition. Portland, USA, 2013: 3166-3173.
[24] YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]//Proceedings of 2013 IEEE Con-ference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 1155-1162.
[25] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 248-255.
[26] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep con-volutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and ma-chine intelligence, 2018, 40(4): 834-848.
[27] ACHANTA R, HEMAMI S, ESTRADA F, et al. Fre-quency-tuned salient region detection[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1597-1604.
[28] JIANG Huaizu, WANG Jingdong, YUAN Zejian, et al. Salient object detection: a discriminative regional feature integration approach[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 2083-2090.
[29] TONG Na, LU Huchuan, RUAN Xiang, et al. Salient object detection via bootstrap learning[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1884-1892.
[30] LI Guanbin, YU Yizhou. Visual saliency based on mul-tiscale deep features[C]//Proceedings of 2015 IEEE Con-ference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 5455-5463.
[31] ZHAO Rui, OUYANG Wanli, LI Hongsheng, et al. Sali-ency detection by multi-context deep learn-ing[C]//Proceedings of 2015 IEEE Conference on Com-puter Vision and Pattern Recognition. Boston, USA, 2015: 1265-1274.
[32] LI Xi, ZHAO Liming, WEI Lina, et al. DeepSaliency: multi-task deep neural network model for salient object detection[J]. IEEE transactions on image processing, 2016, 25(8): 3919-3930.
[33] LEE G, TAI Y, KIM J. Deep saliency with encoded low level distance map and high level features[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 660-668.
[34] LI Guanbin, YU Yizhou. Deep contrast learning for salient object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 478-487.
[35] WANG Tiantian, ZHANG Lihe, LU Huchuan, et al. Kernelized subspace ranking for saliency detec-tion[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands, 2016: 450-466.
[36] YU Changqian, WANG Jingbo, PENG Chao, et al. Learning a discriminative feature network for semantic segmentation[C]//Proceedings of 2018 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 1857-1866.
[37] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 6230-6239.
[38] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmen-tation[J]. arXiv: 1706.05587, 2017.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2019-03-02。
基金项目:国家自然科学基金项目(61701473);中国科学院STS计划项目(KFJ-STS-ZDTP-070);北京市科技计划项目(Z181100001518006);中国科学院国防科技创新基金项目(CXJJ-17-M152);中国科学院战略性先导科技专项(A类)(XDA18040400)
作者简介:王凯诚,硕士研究生,主要研究方向为神经网络芯片、机器学习;鲁华祥,研究员,博士生导师,主要研究方向为类神经计算芯片、类脑神经计算技术和应用系统、信息与信号处理。出版专著1部,授权发明专利10项。发表学术论文40余篇;龚国良,副研究员,主要研究方向为智能算法与类脑计算系统、图像处理芯片、AI芯片、神经网络算法及其应用研究。授权发明专利4项。发表学术论文6篇。
通讯作者:龚国良.E-mail:gongmianjie@semi.ac.cn

更新日期/Last Update: 2021-01-15
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134