[1]王康,纪志坚,晁永翠.二阶邻居协议下多智能体系统能控能观性保持[J].智能系统学报,2017,12(02):213-220.[doi:10.11992/tis.201601022]
 WANG Kang,JI Zhijian,CHAO Yongcui.A control strategy for maitaining controllability and observability of a multi-agent system with the second-order neighborhood protocol[J].CAAI Transactions on Intelligent Systems,2017,12(02):213-220.[doi:10.11992/tis.201601022]
点击复制

二阶邻居协议下多智能体系统能控能观性保持(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年02期
页码:
213-220
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
A control strategy for maitaining controllability and observability of a multi-agent system with the second-order neighborhood protocol
作者:
王康 纪志坚 晁永翠
青岛大学 自动化与电气工程学院, 山东 青岛 266071
Author(s):
WANG Kang JI Zhijian CHAO Yongcui
School of Automation Engineering, Qingdao University, Qingdao 266071, China
关键词:
多智能体系统二阶邻居协议时变拓扑结构结构能控性能控性能观测性图论
Keywords:
multi-agent systemsecond-order neighborhood protocoltime varying topologiesstructural controllabilitycontrollabilityobservabilitygraph theory
分类号:
TP13
DOI:
10.11992/tis.201601022
摘要:
为了研究多智能体系统的一致性特点及能控、能观性保持策略,分析了具有时变拓扑结构的多智能体系统在一阶邻居协议和二阶邻居协议下的一致性速度,针对拓扑结构的特殊性,利用结构能控性性质和拉普拉斯矩阵第二小特征值与一致性速度之间存在的关系设计出一种使能控性和能观测性保持的控制策略。此外,得出多智能体系统在二阶邻居协议下,具有更快的一致性速度的结论。文中2个主要定理分别通过算例和仿真进行验证,算例和仿真结果与定理结论一致。
Abstract:
In order to study the characteristics of the consensus, controllability and observability of multi-agent systems, we analyze the consensus speed of a multi-agent system with time-varying topologies under first-order and second-order neighborhood protocols. By utilizing the properties of the structural controllability and the relationship between the second-smallest eigenvalue of the Laplacian matrix and the consensus speed, we designed a control strategy to maintain both controllability and observability. In addition, we concluded that the multi-agent system had a faster consensus speed under the second-order neighborhood protocol. Using examples and simulations, we verified the two main theorems proposed in this paper, with our observed results in full agreement with the conclusions of our theoretical analysis.

参考文献/References:

[1] GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: Springer, 2001.
[2] TANNER H G. On the controllability of nearest neighbor interconnections[C]//Proceedings of the 43rd IEEE Conference on decision and Control. Nassau, 2004, 3: 2467-2472.
[3] JI Zhijian, LIN Hai, YU Haisheng. Protocols design and uncontrollable topologies construction for multi-agent networks[J]. IEEE transactions on automatic control, 2015, 60(3): 781-786.
[4] JI Zhijian, LIN Hai, YU Haisheng. Leaders in multi-agent controllability under consensus algorithm and tree topology[J]. Systems & control letters, 2012, 61(9): 918-925.
[5] JI Zhijian, WANG Zidong, LIN Hai, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12): 2857-2863.
[6] 晁永翠, 纪志坚, 王耀威, 等. 复杂网络在路形拓扑结构下可控的充要条件[J]. 智能系统学报, 2015, 10(4): 577-582. CHAO Yongcui, JI Zhijian, WANG Yaowei, et al. Necessary and sufficient conditions for the controllability of complex networks with path topology[J]. CAAI transactions on intelligent systems, 2015, 10(4): 577-582.
[7] 董洁, 纪志坚, 王晓晓. 多智能体网络系统的能控性代数条件[J]. 智能系统学报, 2015, 10(5): 747-754. DONG Jie, JI Zhijian, WANG Xiaoxiao. Algebraic conditions for the controllability of multi-agent systems[J]. CAAI transactions on intelligent systems, 2015, 10(5): 747-754.
[8] 王晓晓, 纪志坚. 广播信号下非一致多智能体系统的能控性[J]. 智能系统学报, 2014, 9(4): 401-406. WANG Xiaoxiao, JI Zhijian. Controllability of non-identical multi-agent systems under a broadcasting control signal[J]. CAAI transactions on intelligent systems, 2014, 9(4): 401-406.
[9] SABATTINI L, SECCHI C, FANTUZZI C. Controllability and observability preservation for networked systems with time varying topologies[C]//Proceedings of the 19th World Congress on the International Federation of Automatic Control. Cape Town, South Africa, 2004: 1837-1842.
[10] SABATTINI L, CHOPRA N, SECCHI C. On decentralized connectivity maintenance for mobile robotic systems[C]//Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA, 2011: 988-993.
[11] SABATTINI L, CHOPRA N, SECCHI C. Distributed control of multi-robot systems with global connectivity maintenance[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, 2011: 2321-2326.
[12] SABATTINI L, SECCHI C, COCETTI M, et al. Implementation of coordinated complex dynamic behaviors in multirobot systems[J]. IEEE transactions on robotics, 2015, 31(4): 1018-1032.
[13] DEGROOT M H. Reaching a Consensus[J]. Journal of the American statistical association, 1974, 69(345): 118-121.
[14] CHATTERJEE S, SENETA E. Towards consensus: some convergence theorems on repeated averaging[J]. Journal of applied probability, 1977, 14(1): 89-97.
[15] VICSEK T, CZIRóK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical review letters, 1995, 75(6): 1226-1229.
[16] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE transactions on automatic control, 2004, 49(9): 1520-1533.
[17] REN Wei, BEARD R W, MCLAIN T W. Coordination variables and consensus building in multiple vehicle systems[M]//KUMAR V, LEONARD N, MORSE A S. Cooperative Control. Berlin Heidelberg: Springer, 2005: 171-188.
[18] FIEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak mathematical journal, 1973, 23(2): 298-305.
[19] ZAMANI M, LIN Hai. Structural controllability of multi-agent systems[C]//Proceedings of 2009 American Control Conference. St. Louis, USA, 2009: 5743-5748.
[20] LIN C T. Structural controllability[J]. IEEE transactions on automatic control, 1974, 19(3): 201-208.
[21] EGERSTEDT M, MARTINI S, CAO Ming, et al. Interacting with networks: how does structure relate to controllability in single-leader, consensus networks[J]. IEEE control systems, 2012, 32(4): 66-73.

相似文献/References:

[1]沈 晶,顾国昌,刘海波.基于多智能体的Option自动生成算法[J].智能系统学报,2006,1(01):84.
 SHEN Jing,GU Guo-chang,LIU Hai-bo.Algorithm for automatic constructing Option based on multi-agent[J].CAAI Transactions on Intelligent Systems,2006,1(02):84.
[2]李宗刚,贾英民.一类具有群体LEADER的多智能体系统的聚集行为[J].智能系统学报,2006,1(02):26.
 LI Zong-gang,JIA Ying-min.Aggregation of MultiAgent systems with group leaders[J].CAAI Transactions on Intelligent Systems,2006,1(02):26.
[3]王建春,谢广明.含有障碍物环境下多智能体系统的聚集行为[J].智能系统学报,2007,2(05):78.
 WANG Jian-chun,XIE Guang-ming.Aggregation behaviors of multiAgent systems in an environment with obstacles[J].CAAI Transactions on Intelligent Systems,2007,2(02):78.
[4]王 龙,伏 锋,陈小杰,等.复杂网络上的群体决策[J].智能系统学报,2008,3(02):95.
 WANG Long,FU Feng,CHEN Xiao-jie,et al.Collective decision-making over complex networks[J].CAAI Transactions on Intelligent Systems,2008,3(02):95.
[5]连传强,徐昕,吴军,等.面向资源分配问题的Q-CF多智能体强化学习[J].智能系统学报,2011,6(02):95.
 LIAN Chuanqiang,XU Xin,WU Jun,et al.Q-CF multiAgent reinforcement learningfor resource allocation problems[J].CAAI Transactions on Intelligent Systems,2011,6(02):95.
[6]王冬梅,方华京.反馈控制策略的自适应群集运动[J].智能系统学报,2011,6(02):141.
 WANG Dongmei,FANG Huajing.An adaptive flocking motion with a leader based on a feedback control scheme[J].CAAI Transactions on Intelligent Systems,2011,6(02):141.
[7]董洁,纪志坚,王晓晓.多智能体网络系统的能控性代数条件[J].智能系统学报,2015,10(5):747.[doi:10.11992/tis.201411030]
 DONG Jie,JI Zhijian,WANG Xiaoxiao.Algebraic conditions for the controllability of multi-agent systems[J].CAAI Transactions on Intelligent Systems,2015,10(02):747.[doi:10.11992/tis.201411030]
[8]王中林,刘忠信,陈增强,等.一种多智能体领航跟随编队新型控制器的设计[J].智能系统学报,2014,9(03):298.[doi:10.3969/j.issn.1673-4785.]
 WANG Zhonglin,LIU Zhongxin,CHEN Zengqiang,et al.A kind of new type controller for multi-agent leader-follower formation[J].CAAI Transactions on Intelligent Systems,2014,9(02):298.[doi:10.3969/j.issn.1673-4785.]
[9]王晓晓,纪志坚.广播信号下非一致多智能体系统的能控性[J].智能系统学报,2014,9(04):401.[doi:10.3969/j.issn.1673-4785.201401011]
 WANG Xiaoxiao,JI Zhijian.Controllability of non-identical multi-agent systems under a broadcasting control signal[J].CAAI Transactions on Intelligent Systems,2014,9(02):401.[doi:10.3969/j.issn.1673-4785.201401011]
[10]马晨,陈雪波.基于包含原理的多智能体一致性协调控制[J].智能系统学报,2014,9(04):468.[doi:10.3969/j.issn.1673-4785.201306024]
 MA Chen,CHEN Xuebo.Coordinated control of the consensus of a multi-agent system based on the inclusion principle[J].CAAI Transactions on Intelligent Systems,2014,9(02):468.[doi:10.3969/j.issn.1673-4785.201306024]

备注/Memo

备注/Memo:
收稿日期:2016-1-13;改回日期:。
基金项目:国家自然科学基金项目(61374062);山东省杰出青年科学基金项目(JQ201419).
作者简介:王康,男,1992年生,硕士研究生,主要研究方向为多智能体系统的能控性;纪志坚,男,1973年生,教授,博士生导师,博士,主要研究方向为群体系统动力学与协调控制、复杂网络、切换动力系统的分析与控制、系统生物以及基于网络的控制系统。先后主持国家自然科学基金项目3项、山东省杰出青年科学基金项目1项,山东省杰出青年基金获得者。先后参与多项国家自然科学基金及 “973” 和 “863” 项目的研究。发表学术论文70余篇,其中被SCI检索23篇,EI检索50余篇。
通讯作者:纪志坚. E-mail:jizhijian@pku.org.cn.
更新日期/Last Update: 1900-01-01