[1]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(03):213-217.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4(03):213-217.
点击复制

使用第2代身份证的人脸识别身份认证系统(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年03期
页码:
213-217
栏目:
出版日期:
2009-06-25

文章信息/Info

Title:
Face authentication system using the Chinese second generation identity card
文章编号:
1673-4785(2009)03-0213-05
作者:
任小龙苏光大相 燕
清华大学 电子工程系,北京 100084
Author(s):
REN Xiao-long SU Guang-da XIANG Yan
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
关键词:
人脸识别第2代身份证几何归一化眼镜摘除灰度属性校正MMPPCA
Keywords:
face authentication 2GID card geometric normalization eyeglasses removal grayscale normalization MMPPCA
分类号:
TP391
文献标志码:
A
摘要:
介绍了一种使用第2代身份证的新型人脸识别身份认证系统.该系统采用人脸的多部件融合与主成分分析(MMPPCA)方法.同时还使用各种图像处理方法如几何尺寸归一化、眼镜摘除与不同设备得到图像的灰度属性校正等提高系统性能.在实际数据库中的实验表明该系统在图像质量较低、光照情况不可控的情况下仍可达到比较高的正确率.由于第2代身份证广泛使用在公共安全、海关、银行及其他领域,因此这种使用第2代身份证的身份认证系统有很高的实用价值.
Abstract:
This paper presents a new face authentication system that was developed to use the Chinese second generation identity card (2GID card). A face recognition method based on multimodal parts and principal component analysis (MMPPCA) was adopted. Image preprocessing methods for various input devices, such as geometric normalization, glasses removal and grayscale normalization on a region of interest (ROI) were employed to improve the performance of the system. Experimental results on a real database proved that this authentication system can achieve acceptable results for recognition even though the resolution of the image is quite low and the illumination is uncontrolled. Because of the extensive application of 2GID card in public security, customs, banking and other areas, the proposed face authentication system using 2GID card has great practical value.

参考文献/References:

[1]CLARKE R. Human identification in information systems: management challenges and public policy issues[J]. Information Technology & People, 1994, 7(4): 637.
[2]DAVIES S G. Touching big brother: how biometric technology will fuse flesh and machine[J]. Information Technology & People, 1994, 7(4): 6069.
 [3]NEWHAM E. The biometric report[R]. New York: SJB Services, 1995.
[4]JAIN A K, BOLLE R, PANKANTI S. Biometrics: personal identification in networked society[M]. Norwell, USA: Kluwer Academic Publishers, 1999.
[5]PHILLIPS P J, GROTHER P, MICHEALS R J, et al. FRVT 2002: Evaluation Report[EB/OL]. (20030315)[20080816]. http://www.frvt.org/FRVT2002/documents.htm
[6]SU Guangda, ZHANG Cuiping, DING Rong, et al. MMPPCA face recognition method[J]. Electronics Letters, 2002, 38(25): 16541656
[7]DU Cheng, SU Guangda. Eyeglasses removal from facial images[J]. Pattern Recognition Letters, 2005, 26(14): 22152220.
[8]章柏幸, 苏光大. 人脸成像特性研究及人脸归一化的目标[J]. 光电子?激光, 2003, 14(4): 406410.
ZHANG Baixing, SU Guangda. Research on characteristic of facial imaging and goals of facial image normalization[J]. Journal of Optoelectronics ? Laser, 2003, 14(4): 406410.
[9]PHILLIPS P J, SCRUGGS W T, O’TOOLE A J, et al. FRVT 2006 and ICE 2006 LargeScale Results[EB/OL]. (20070310)[20080816]. http://www.frvt.org/FRVT2006/docs/FRVT2006andICE2006LargeScaleReport.pdf.

相似文献/References:

[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(03):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(03):25.
[2]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报,2009,4(06):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4(03):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[3]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报,2011,6(06):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6(03):531.
[4]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报,2012,7(03):271.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7(03):271.
[5]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报,2015,10(01):12.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10(03):12.[doi:10.3969/j.issn.1673-4785.201312064]
[6]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(03):912.[doi:10.11992/tis.201509025]
[7]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(03):279.[doi:10.11992/tis.201603026]
[8]刘训利,龚勋,王国胤.一种基于非残差估计线性表示模型的人脸识别[J].智能系统学报,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
 LIU Xunli,GONG Xun,WANG Guoyin.Face recognition based on the linear representation model without residual estimation[J].CAAI Transactions on Intelligent Systems,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
[9]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(05):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(03):616.[doi:10.11992/tis.201706025]
[10]余拓,陈莹.基于加权边缘弱化引导滤波的人脸光照补偿[J].智能系统学报,2018,13(03):373.[doi:10.11992/tis.201612011]
 YU Tuo,CHEN Ying.Face illumination compensation based on weighted edge-weakening guided image filter[J].CAAI Transactions on Intelligent Systems,2018,13(03):373.[doi:10.11992/tis.201612011]

备注/Memo

备注/Memo:
收稿日期:2008-09-16.
基金项目:十一五”国家科技支撑计划资助项目(2006BAK08B07).
通信作者:任小龙.E-mail:rxl06@mails.tsinghua.edu.cn.
作者简介:任小龙,男,1983年生,硕士研究生,主要研究方向为人脸识别的硬件实现
苏光大,男,1948年生,教授,博士生导师.主要研究方向为图像识别(人脸识别、指纹识别)和高速图像处理,并致力于智能化的高速图像处理系统的研究.承担了多项国家级和省部级的重点科研任务.获省部级科技成果奖6次、多项发明专利、发明创业奖、发明展金奖,并3次获得清华大学先进个人称号.发表学术论文100余篇,出版专著2部.
相燕,女,1984年生,硕士研究生,主要研究方向为人脸识别算法.
更新日期/Last Update: 2009-08-31