[1]ZHANG Weinan,LIU Ting.Research and application of embodied intelligence[J].CAAI Transactions on Intelligent Systems,2025,20(1):255-262.[doi:10.11992/tis.202406044]
Copy

Research and application of embodied intelligence

References:
[1] CAMPBELL M, HOANE J. Deep blue[J]. Artificial intelligence, 2002, 134(1/2): 57-83.
[2] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[3] OpenAI. Introducing ChatGPT[EB/OL]. (2022-11-30)[2024-06-13]. https://openai.com/index/chatgpt.
[4] OpenAI. Video generation models as world simulators [EB/OL]. (2024-02-15)[2024-06-13]. https://openai.com/index/video-generation-models-as-world-simulators.
[5] 唐佩佩, 叶浩生. 作为主体的身体: 从无身认知到具身认知[J]. 心理研究, 2012, 5(3): 3-8.
TANG Peipei, YE Haosheng. Body as the subject: from the disembodied cognition to embodied cognition[J]. Psychological research, 2012, 5(3): 3-8.
[6] 叶浩生. 认知与身体: 理论心理学的视角[J]. 心理学报, 2013, 45(4): 481-488.
YE Haosheng. Cognition and body: a perspective from theoretical psychology[J]. Acta psychologica sinica, 2013, 45(4): 481-488.
[7] 卢策吾, 王鹤. 具身智能(embodied artificial intelligence)[EB/OL]. (2023-07-22)[2024-06-13]. https://www.ccf.org.cn/Media_list/gzwyh/jsjsysdwyh/2023-07-22/794317.shtml.
LU Cewu, WANG He. Embodied AI(embodied artificial intelligence)[EB/OL]. (2023-07-22)[2024-06-13]. https://www.ccf.org.cn/Media_list/gzwyh/jsjsysdwyh/2023-07-22/794317.shtml.
[8] ZHONG Licheng, YANG Lixin, LI Kailin, et al. Color-NeuS: reconstructing neural implicit surfaces with color[EB/OL]. (2023-12-19)[2024-06-13]. https://arxiv.org/abs/2308.06962v2.
[9] LI Kailin, YANG Lixin, ZHEN Haoyu, et al. Chord: category-level hand-held object reconstruction via shape deformation[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 9410-9420.
[10] XU Wenqiang, YU Zhenjun, XUE Han, et al. Visual-tactile sensing for in-hand object reconstruction[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 8803-8812.
[11] LIU Liu, XUE Han, XU Wenqiang, et al. Toward real-world category-level articulation pose estimation[J]. IEEE transactions on image processing, 2022, 31: 1072-1083.
[12] XUE Han, XU Wenqiang, ZHANG Jieyi, et al. GarmentTracking: category-level garment pose tracking[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 21233-21242.
[13] RAMAKRISHNAN S K, JAYARAMAN D, GRAUMAN K. An exploration of embodied visual exploration[J]. International journal of computer vision, 2021, 129(5): 1616-1649.
[14] LYU Jun, YU Qiaojun, SHAO Lin, et al. SAGCI-system: towards sample-efficient, generalizable, compositional, and incremental robot learning[C]//2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 98-105.
[15] LI Yonglu, LIU Xinpeng, WU Xiaoqian, et al. HAKE: a knowledge engine foundation for human activity understanding[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(7): 8494-8506.
[16] MEES O, HERMANN L, ROSETE-BEAS E, et al. CALVIN: a benchmark for language-conditioned policy learning for long-horizon robot manipulation tasks[J]. IEEE robotics and automation letters, 2022, 7(3): 7327-7334.
[17] MENDEZ-MENDEZ J, KAELBLING L P, LOZANO-PéREZ T. Embodied lifelong learning for task and motion planning[C]//Conference on Robot Learning. New York: PMLR, 2023: 2134-2150.
[18] JIANG Yunfan, GUPTA A, ZHANG Zichen, et al. VIMA: robot manipulation with multimodal prompts[C]// Proceedings of the 40th International Conference on Machine Learning. New York: PMLR, 2023: 14975-15022.
[19] AHN M, BROHAN A, BROWN N, et al. Do As I can, not As I say: grounding language in robotic affordances[EB/OL]. (2022-04-04)[2024-06-13]. https://arxiv.org/abs/2204.01691v2.
[20] DAMEN Dima, DOUGHTY H, FARINELLA G M, et al. Scaling egocentric vision: the ?quation missing\"dataset[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 753-771.
[21] DRIESS D, XIA Fei, SAJJADI M S M, et al. PaLM-E: an embodied multimodal language model[C]//International Conference on Machine Learning. New York: PMLR, 2023: 8469-8488.
[22] MA Y J, LIANG W, WANG Guanzhi, et al. Eureka: human-level reward design via coding large language models[EB/OL]. (2023-10-19)[2024-06-13]. https://arxiv.org/abs/2310.12931v2.
[23] BROHAN A, BROWN N, CARBAJAL J, et al. RT-2: vision-language-action models transfer web knowledge to robotic control[C]// Proceedings of the 7th Conference on Robot Learning. New York: PMLR, 2023: 2165-2183.
[24] JAMES S, WOHLHART P, KALAKRISHNAN M, et al. Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12619-12629.
[25] ZAGAL J C, RUIZ-DEL-SOLAR J. Combining simulation and reality in evolutionary robotics[J]. Journal of intelligent and robotic systems, 2007, 50(1): 19-39.
[26] KADIAN A, TRUONG J, GOKASLAN A, et al. Sim2Real predictivity: does evaluation in simulation predict real-world performance?[J]. IEEE robotics and automation letters, 2020, 5(4): 6670-6677.
[27] FANG Haoshu, WANG Chenxi, FANG Hongjie, et al. AnyGrasp: robust and efficient grasp perception in spatial and temporal domains[J]. IEEE transactions on robotics, 2023, 39(5): 3929-3945.
[28] ONGGO B S S, HILL J. Data identification and data collection methods in simulation: a case study at ORH Ltd[J]. Journal of simulation, 2014, 8(3): 195-205.
[29] DEITKE M, HAN W, HERRASTI A, et al. RoboTHOR: an open simulation-to-real embodied AI platform[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3164-3174.
[30] KROEMER O, NIEKUM S, KONIDARIS G. A review of robot learning for manipulation: challenges, representations, and algorithms[J]. Journal of machine learning research, 2021, 22(1): 1395-1476.
[31] FU Zipeng, ZHAO T Z, FINN C. Mobile ALOHA: learning bimanual mobile manipulation with low-cost whole-body teleoperation[EB/OL]. (2024-01-04)[2024-06-13]. https://arxiv.org/abs/2401.02117v1.
[32] ZHANG Gu, FANG Haoshu, FANG Hongjie, et al. Flexible handover with real-time robust dynamic grasp trajectory generation[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems. Detroit: IEEE, 2023: 3192-3199.
[33] LI Shoujie, YU Haixin, DING Wenbo, et al. Visual-tactile fusion for transparent object grasping in complex backgrounds[J]. IEEE transactions on robotics, 2023, 39(5): 3838-3856.
[34] SHEN Bokui, XIA Fei, LI Chengshu, et al. IGibson 1.0: a simulation environment for interactive tasks in large realistic scenes[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 7520-7527.
[35] JING Mingxuan, MA Xiaojian, HUANG Wenbing, et al. Task transfer by preference-based cost learning[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2019: 2471-2478.
[36] KATO I, OHTERU S, KOBAYASHI H, et al. Information-power machine with senses and limbs[M]//On Theory and Practice of Robots and Manipulators. Vienna: Springer Vienna, 1974: 11-24.
[37] KUSUDA Y. The humanoid robot scene in Japan[J]. Industrial robot, 2002, 29(5): 412-419.
Similar References:

Memo

-

Last Update: 2025-01-05

Copyright © CAAI Transactions on Intelligent Systems