[1]YANG Yuyu,YANG Xiao,PAN Zaiyu,et al.Domain adaptive semantic segmentation based on prototype-guided and adaptive feature fusion[J].CAAI Transactions on Intelligent Systems,2025,20(1):150-161.[doi:10.11992/tis.202403010]
Copy

Domain adaptive semantic segmentation based on prototype-guided and adaptive feature fusion

References:
[1] 景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述[J]. 计算机工程, 2020, 46(10): 1-17.
JING Zhuangwei, GUAN Haiyan, PENG Daifeng, et al. Survey of research in image semantic segmentation based on deep neural network[J]. Computer engineering, 2020, 46(10): 1-17.
[2] 计梦予, 袭肖明, 于治楼. 基于深度学习的语义分割方法综述[J]. 信息技术与信息化, 2017(10): 137-140.
JI Mengyu, XI Xiaoming, YU Zhilou. A review of semantic segmentation based on deep learning[J]. Information technology and informatization, 2017(10): 137-140.
[3] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. Boston: IEEE, 2017: 640-651.
[4] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548.
FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: general situation and complex situation[J]. Acta automatica sinica, 2021, 47(3): 515-548.
[5] 高德鹏. 基于跨域正则化模型的域适应方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
GAO Depeng. Research on domain adaptation method based on cross-domain regularization model[D]. Harbin: Harbin Institute of Technology, 2020.
[6] 王格格, 郭涛, 余游, 等. 基于生成对抗网络的无监督域适应分类模型[J]. 电子学报, 2020, 48(6): 1190-1197.
WANG Gege, GUO Tao, YU You, et al. Unsupervised domain adaptation classification model based on generative adversarial network[J]. Acta electronica sinica, 2020, 48(6): 1190-1197.
[7] BOUSMALIS K, SILBERMAN N, DOHAN D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 95-104.
[8] ZHOU Wei, WANG Yukang, CHU Jiajia, et al. Affinity space adaptation for semantic segmentation across domains[J]. IEEE transactions on image processing, 2021, 30: 2549-2561.
[9] 高子航, 刘兆英, 张婷, 等. 基于对抗域适应的红外舰船目标分割[J]. 数据采集与处理, 2023, 38(3): 598-607.
GAO Zihang, LIU Zhaoying, ZHANG Ting, et al. Infrared ship target segmentation based on adversarial domain adaptation[J]. Journal of data acquisition and processing, 2023, 38(3): 598-607.
[10] 张桂梅, 鲁飞飞, 龙邦耀, 等. 结合自集成和对抗学习的域自适应城市场景语义分割[J]. 模式识别与人工智能, 2021, 34(1): 58-67.
ZHANG Guimei, LU Feifei, LONG Bangyao, et al. Domain adaptation semantic segmentation for urban scene combining self-ensembling and adversarial learning[J]. Pattern recognition and artificial intelligence, 2021, 34(1): 58-67.
[11] ZHAO Yihao, WU Ruihai, DONG Hao. Unpaired image-to-image translation using adversarial consistency loss[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 800-815.
[12] 李美丽, 杨传颖, 石宝. 基于语义分割的图像风格迁移技术研究[J]. 计算机工程与应用, 2020, 56(24): 207-213.
LI Meili, YANG Chuanying, SHI Bao. Research on image style transfer technology based on semantic segmentation[J]. Computer engineering and applications, 2020, 56(24): 207-213.
[13] 吕佳, 李婷婷. 半监督自训练方法综述[J]. 重庆师范大学学报(自然科学版), 2021, 38(5): 98-106.
LYU Jia, LI Tingting. A summary of semi-supervised self-training methods[J]. Journal of Chongqing normal university (natural science edition), 2021, 38(5): 98-106.
[14] 张勋晖, 周勇, 赵佳琦, 等. 基于熵增强的无监督域适应遥感图像语义分割[J]. 计算机应用研究, 2021, 38(9): 2852-2856.
ZHANG Xunhui, ZHOU Yong, ZHAO Jiaqi, et al. Entropy enhanced unsupervised domain adaptive remote sensing image semantic segmentation[J]. Application research of computers, 2021, 38(9): 2852-2856.
[15] ZHANG Pan, ZHANG Bo, ZHANG Ting, et al. Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12409-12419.
[16] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239.
[17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834-848.
[18] YANG Zhen, PENG Xiaobao, YIN Zhijian, et al. Deeplab_v3_plus-net for image semantic segmentation with channel compression[C]//2020 IEEE 20th International Conference on Communication Technology. Nanning: IEEE, 2020: 1320-1324.
[19] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[20] XIE Enze, WANG Wenhai, YU Zhiding, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077.
[21] LIU Ze, HU Han, LIN Yutong, et al. Swin transformer V2: scaling up capacity and resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11999-12009.
[22] SMOLA A J, GRETTON A, BORGWARDT K. Maximum mean discrepancy[C]//2006 ICONIP 13th International Conference on Neural Information Processing. HongKong: Springer International Publishing, 2006: 3-6.
[23] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[EB/OL]. (2014-06-10)[2024-03-05]. https://arxiv.org/abs/1406.2661v1.
[24] HOFFMAN J, WANG Dequan, YU F, et al. FCNs in the wild: pixel-level adversarial and constraint-based adaptation[EB/OL]. (2016-12-08)[2024-02-15]. https://doi.org/10.48550/acxiv.
[25] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242-2251.
[26] TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7472-7481.
[27] VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2512-2521.
[28] JIANG Zhengkai, LI Yuxi, YANG Ceyuan, et al. Prototypical contrast adaptation for Domain adaptive semantic segmentation[M]//Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 36-54.
[29] HOYER L, DAI Dengxin, WANG Haoran, et al. MIC: masked image consistency for context-enhanced domain adaptation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 11721-11732.
[30] CHEN Mu, ZHENG Zhedong, YANG Yi, et al. PiPa: pixel- and patch-wise self-supervised learning for domain adaptative semantic segmentation[C]//Proceedings of the 31st ACM International Conference on Multimedia. Ottawa: ACM, 2023: 1905-1914.
[31] WANG Yisen, MA Xingjun, CHEN Zaiyi, et al. Symmetric cross entropy for robust learning with noisy labels[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 322-330.
[32] ZOU Yang, YU Zhiding, LIU Xiaofeng, et al. Confidence regularized self-training[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 5981-5990.
[33] RICHTER S R, VINEET V, ROTH S, et al. Playing for data: ground truth from computer games[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 102-118.
[34] ROS G, SELLART L, MATERZYNSKA J, et al. The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vega: IEEE, 2016: 3234-3243.
[35] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213-3223.
[36] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[37] YANG Yanchao, SOATTO S. FDA: fourier domain adaptation for semantic segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4084-4094.
[38] KANG Guoliang, WEI Yunchao, YANG Yi, et al. Pixel-level cycle association: a new perspective for domain adaptive semantic segmentation[J]. Advances in neural information processing systems, 2020, 33: 3569.
[39] IQBAL J, ALI M. MLSL: multi-level self-supervised learning for domain adaptation with spatially independent and semantically consistent labeling[C]//2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass: IEEE, 2020: 1853-1862.
[40] LUO Yawei, LIU Ping, ZHENG Liang, et al. Category-level adversarial adaptation for semantic segmentation using purified features[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(8): 3940-3956.
[41] TOLDO M, MICHIELI U, ZANUTTIGH P. Unsupervised domain adaptation in semantic segmentation via orthogonal and clustered embeddings[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1357-1367.
[42] MELAS-KYRIAZI L, MANRAI A K. PixMatch: unsupervised domain adaptation via pixelwise consistency training[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12430-12440.
[43] IQBAL J, RAWAL H, HAFIZ R, et al. Distribution regularized self-supervised learning for domain adaptation of semantic segmentation[J]. Image and vision computing, 2022, 124: 104504.
[44] CAO Yihong, ZHANG Hui, LU Xiao, et al. Adaptive refining-aggregation-separation framework for unsupervised domain adaptation semantic segmentation[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(8): 3822-3832.
[45] GUO Yaqian, WANG Xin, LI Ce, et al. Domain adaptive semantic segmentation by optimal transport[J]. Fundamental research, 2024, 4(5): 981-991.
[46] ZHANG Yuhang, TIAN Shishun, LIAO Muxin, et al. A hybrid domain learning framework for unsupervised semantic segmentation[J]. Neurocomputing, 2023, 516: 133-145.
[47] CHUNG I, YOO J, KWAK N. Exploiting inter-pixel correlations in unsupervised domain adaptation for semantic segmentation[C]//2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Waikoloa: IEEE, 2023: 12-21.
[48] LI Jing, ZHOU Kang, QIAN Shenhan, et al. Feature re-representation and reliable pseudo label retraining for cross-domain semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2024, 46(3): 1682-1694.
[49] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 01301.
Similar References:

Memo

-

Last Update: 2025-01-05

Copyright © CAAI Transactions on Intelligent Systems