[1]CHEN Wei,LYU Li,XIAO Renbin,et al.Density peak clustering algorithm based on symmetric neighborhood and micro-cluster merging for mixed datasets[J].CAAI Transactions on Intelligent Systems,2025,20(1):172-184.[doi:10.11992/tis.202311005]
Copy

Density peak clustering algorithm based on symmetric neighborhood and micro-cluster merging for mixed datasets

References:
[1] ZHANG Wei, DU Lan, LI Liling, et al. Infinite Bayesian one-class support vector machine based on Dirichlet process mixture clustering[J]. Pattern recognition, 2018, 78: 56-78.
[2] ZHANG Jie, YAO Pengpeng, WU H, et al. Automatic color pattern recognition of multispectral printed fabric images[J]. Journal of intelligent manufacturing, 2023, 34(6): 2747-2763.
[3] JAIN A K, DUIN R P W, MAO Jianchang. Statistical pattern recognition: a review[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(1): 4-37.
[4] NIE Chunxiao, SONG Futie. Analyzing the stock market based on the structure of kNN network[J]. Chaos, solitons & fractals, 2018, 113: 148-159.
[5] LIU Xiuwen, FU Jianming, CHEN Yanjiao. Event evolution model for cybersecurity event mining in tweet streams[J]. Information sciences, 2020, 524: 254-276.
[6] HE Song, HE Haochen, XU Wenjian, et al. ICM: a web server for integrated clustering of multi-dimensional biomedical data[J]. Nucleic acids research, 2016, 44(W1): W154-W159.
[7] GAO Chenhui, CHEN Wenzhi, NIE Feiping, et al. Subspace clustering by directly solving discriminative K-means[J]. Knowledge-based systems, 2022, 252: 109452.
[8] HORNG S C, YANG Fengyi, LIN S S. Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter[J]. Expert systems with applications, 2011, 38(1): 933-940.
[9] LIN Chuan, HAN Guangjie, WANG Tingting, et al. Fast node clustering based on an improved birch algorithm for data collection towards software-defined underwater acoustic sensor networks[J]. IEEE sensors journal, 2021, 21(22): 25480-25488.
[10] CHOI J W, PARK G M, KIM J H. SR-EM: episodic memory aware of semantic relations based on hierarchical clustering resonance network[J]. IEEE transactions on cybernetics, 2022, 52(10): 10339-10351.
[11] WANG Yue fei, JIONG Yu, SU Guo ping, et al. A new outlier detection method based on OPTICS[J]. Sustainable cities and society, 2019, 45: 197-212.
[12] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[13] 陈蔚昌, 赵嘉, 肖人彬, 等. 面向密度分布不均数据的近邻优化密度峰值聚类算法[J]. 控制与决策, 2024, 39(3): 919-928.
CHEN Weichang, ZHAO Jia, XIAO Renbin, et al. Density peaks clustering algorithm with nearest neighbor optimization for data with uneven density distribution[J]. Control and decision, 2024, 39(3): 919-928.
[14] 吕莉, 朱梅子, 康平, 等. 面向分布不均数据的混合近邻密度峰值聚类算法[J/OL]. 控制理论与应用. (2023-11-16)[2024-01-02]. http://kns.cnki.net/kcms/detail/44.1240.TP.20231114.1333.014.html.
LYU Li, ZHU Meizi, KANG Ping, et al. Multiplex neighbor density peaks clustering for uneven density data sets[J/OL]. Control theory & applications. (2023-11-16)[2024-01-02]. http://kns.cnki.net/kcms/detail/44.1240.TP.20231114.1333.014.html.
[15] 吴润秀, 尹士豪, 赵嘉, 等. 基于相对密度估计和多簇合并的密度峰值聚类算法[J]. 控制与决策, 2023, 38(4): 1047-1055.
WU Runxiu, YIN Shihao, ZHAO Jia, et al. Density peaks clustering based on relative density estimating and multi cluster merging[J]. Control and decision, 2023, 38(4): 1047-1055.
[16] 赵嘉, 王刚, 吕莉, 等. 面向流形数据的测地距离与余弦互逆近邻密度峰值聚类算法[J]. 电子学报, 2022, 50(11): 2730-2737.
ZHAO Jia, WANG Gang, LYU Li, et al. Density peaks clustering algorithm based on geodesic distance and cosine mutual reverse nearest neighbors for manifold datasets[J]. Acta electronica sinica, 2022, 50(11): 2730-2737.
[17] TAO Xinmin, GUO Wenjie, REN Chao, et al. Density peak clustering using global and local consistency adjustable manifold distance[J]. Information sciences, 2021, 577: 769-804.
[18] 吕莉, 朱梅子, 康平, 等. 二阶K近邻和多簇合并的密度峰值聚类算法[J]. 吉林大学学报(工学版), 2024, 54(5): 1417-1425.
LYU Li, ZHU Meizi, KANA Ping, et al. Density peaks clustering with second-order K-nearest neighbors and multi-cluster merging[J]. Journal of Jilin University (engineering and technology edition), 2024, 54(5): 1417-1425.
[19] BRYANT A, CIOS K. RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates[J]. IEEE transactions on knowledge and data engineering, 2018, 30(6): 1109-1121.
[20] WU Chunrong, LEE Jia, ISOKAWA T, et al. Efficient clustering method based on density peaks with symmetric neighborhood relationship[J]. IEEE access, 2019, 7: 60684-60696.
[21] 徐晓, 丁世飞, 孙统风, 等. 基于网格筛选的大规模密度峰值聚类算法[J]. 计算机研究与发展, 2018, 55(11): 2419-2429.
XU Xiao, DING Shifei, SUN Tongfeng, et al. Large-scale density peaks clustering algorithm based on grid screening[J]. Journal of computer research and development, 2018, 55(11): 2419-2429.
[22] DING Shifei, LI Chao, XU Xiao, et al. A sampling-based density peaks clustering algorithm for large-scale data[J]. Pattern recognition, 2023, 136: 109238.
[23] GUO Wenjie, WANG Wenhai, ZHAO Shunping, et al. Density peak clustering with connectivity estimation[J]. Knowledge-based systems, 2022, 243: 108501.
[24] SHI Aiye, ZHAO Jia, TANG Jingjing, et al. Improved density peaks clustering based on firefly algorithm[J]. International journal of bio-inspired computation, 2020, 15(1): 24.
[25] LOTFI A, MORADI P, BEIGY H. Density peaks clustering based on density backbone and fuzzy neighborhood[J]. Pattern recognition, 2020, 107: 107449.
[26] VINH N, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of machine learning research, 2010, 11(1): 2837-2854.
[27] FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American statistical association, 1983, 78(383): 553-569.
[28] JAIN A K, LAW M. Data clustering: a user’s dilemma[C]//Proceedings of the First International conference on pattern recognition and machine intelligence. Heidelberg: Springer, 2005: 1-10.
[29] XU Xiao, DING Shifei, WANG Lijuan, et al. A robust density peaks clustering algorithm with density-sensitive similarity[J]. Knowledge-based systems, 2020, 200: 106028.
[30] 张清华, 周靖鹏, 代永杨, 等. 基于代表点与K近邻的密度峰值聚类算法[J]. 软件学报, 2023, 34(12): 5629-5648.
ZHANG Qinghua, ZHOU Jingpeng, DAI Yongyang, et al. Density peaks clustering algorithm based on representative points and K-nearest neighbors[J]. Journal of software, 2023, 34(12): 5629-5648.
[31] 赵嘉, 陈磊, 吴润秀, 等. K近邻和加权相似性的密度峰值聚类算法[J]. 控制理论与应用, 2022, 39(12): 2349-2357.
ZHAO Jia, CHEN Lei, WU Runxiu, et al. Density peaks clustering algorithm with K-nearest neighbors and weighted similarity[J]. Control theory & applications, 2022, 39(12): 2349-2357.
[32] ZIMMERMAN D W, ZUMBO B D. Relative power of the wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks[J]. The journal of experimental education, 1993, 62(1): 75-86.
[33] BLAKE C L, MERZ C J. UCI repository of machine learning database[EB/OL]. (2016-12-28)[2023-11-05]. http://archive.ics.uci.edu/ml/index.html.
[34] CHARYTANOWICZ M, NIEWCZAS J, KULCZYCKI P, et al. Complete gradient clustering algorithm for features analysis of X-ray images[M]//Advances in Intelligent and Soft Computing. Berlin: Springer Berlin Heidelberg, 2010: 15-24.
[35] SIGILLITO V G, WING S P, HUTTON L V, et al. Classification of radar returns from the ionosphere using neural networks[J]. Johns Hopkins APL technical digest (applied physics laboratory), 1989, 10(3): 262-266.
[36] DIAS D B, MADEO R C B, ROCHA T, et al. Hand movement recognition for Brazilian sign language: a study using distance-based neural networks[C]//2009 International Joint Conference on Neural Networks. Atlanta: IEEE, 2009: 697-704.
[37] NENE S, NAYAR S, MURASE H. Columbia object image library (COIL-20): CUCS 006 96[R]. Columbia: Department of Computer Science, Columbia University, 1996.
Similar References:

Memo

-

Last Update: 2025-01-05

Copyright © CAAI Transactions on Intelligent Systems